2. Логика и ‘чувство реальности’
Установив зависимость онтологических представлений от логической структуры, Рассел показал, что избранный способ формализации затрагивает не только структуру мысли, но и нечто говорит о мире. Оказалось, что способы построения онтологий, базировавшиеся на том, как традиционная логика представляла структуру суждения, не являются единственными, а представляют собой лишь один из возможных вариантов. Плюралистическая онтология, основанная на внешних отношениях, построенная Расселом в соответствии с функциональной точкой зрения на высказывания, является, по-видимому, одним из самых интересных его достижений, как логических, так и философских. Ему удалось показать, что онтологию можно рассматривать как следствие определенной формально-логической доктрины. Выявление структуры мысли задает структуру мыслимого, и в этом отношении формальная логика приобретает трансцендентальное содержание. Однако в рамках самой логики все это остается на уровне бессодержательных моделей, которые, как таковые, имеют дело с любой возможностью. «В логике было бы пустой тратой времени рассматривать выводы относительно частных случаев; мы имеем дело всегда с совершенно общими и чисто формальными импликациями, оставляя другим наукам исследование того, в каких случаях предложения подтверждаются, а в каких нет»[2] . Устанавливая границы логики как науки о возможном, Рассел тем не менее корректирует само понятие возможности. На всем протяжении развития его характеризует то, что сам он называет ‘чувством реальности’. Здесь показательным выглядит его следующее заявление, может быть полемически и заостренное, но весьма характерное: «Логика должна допускать единорогов не в большей степени, чем зоология, потому что логика имеет дело с реальным миром в той же степени, что и зоология, хотя с его наиболее абстрактными и общими чертами: повинуясь чувству реальности, мы будем настаивать на том, что в анализе суждений нельзя допускать ничего ‘нереального’»[3] . Стало быть, формальная логика для Рассела хотя и является наукой о возможном, все равно имеет единственную реализацию, и эта реализация есть наш действительный мир.
Из такого понимания логики вытекают как минимум два важных следствия, придающих специфическую окраску взглядам Рассела на содержание и границы формального анализа.
С одной стороны, имея в перспективе действительный мир, Рассел к числу логических принципов относит такие утверждения, которые выглядят несколько сомнительными, поскольку не имеют аналитического характера. Последнее придает развиваемой им логике ‘реистическую окраску’.
С другой стороны, так как Рассел наполняет логику онтологическим содержанием, он стремится представить процесс познания таким образом, чтобы тот соответствовал логическим структурам, выведенным с помощью чисто формального исследования.
Эти две разнонаправленные, но связанные между собой тенденции пронизывают все творчество раннего Рассела, и именно те положения, которые относятся к их реализации, подверглись наиболее острой критике Витгенштейна и потребовали существенных изменений. Рассмотрим их несколько подробнее. Начнем с того, каким образом логика у Рассела приобретает реистический характер.
3. Теория типов
Уже говорилось, что Рассел принимает функциональную трактовку высказываний, предложенную Фреге. Однако его не все в ней удовлетворяет. В частности, Рассел не принимает фрегеанскую трактовку функции как неопределяемого понятия. Напомним, что с точки зрения Фреге, выделение в высказывании функции и аргумента зависит от контекста и то, что рассматривалось в качестве функции, может становиться аргументом, и наоборот. Отталкиваясь от такого понимания, Б.Рассел сформулировал свой знаменитый парадокс. Если функция и аргумент находятся на одном и том же уровне, то, сконструировав высказывание, в котором одно и то же выражение может рассматриваться одновременно как функция и как аргумент этой функции, можно прийти к противоречию. В письме к Фреге Рассел следующим образом высказывает свои сомнения: «Вы утверждаете, что функция может быть неопределяемым элементом. Я тоже так считал, но теперь этот взгляд кажется мне сомнительным из-за следующего противоречия: Пусть w будет предикатом ‘быть предикатом, не приложимым к самому себе’. Приложим ли w к самому себе? Из любого ответа вытекает противоречие. Стало быть, мы должны заключить, что w не является предикатом. Также не существует класса (как целого) тех классов, которые, как целое, являются членами самих себя. Отсюда я заключаю, что при определенных обстоятельствах определяемое множество не образует целого»[4] .
Проясним данный парадокс на примере. Согласно каждой высказывательной функции можно образовать класс предметов. Например, функции ‘чайная ложка (х)’ соответствует класс индивидов, удовлетворяющих данную функцию (т.е. при заполнении аргументного места, делающих соответствующее высказывание истинным) и являющихся чайными ложками. Принцип интуитивной абстракции позволяет образовывать классы с любым набором индивидов. Причем при неограниченном применении этого принципа в качестве индивидов могут выступать и сами классы (т.е. они сами могут рассматриваться как заполняющие аргументные места соответствующих функций). Например, функции ‘класс предметов (х)’ будет соответствовать класс всех классов любых предметов. При таком подходе некоторые классы могут содержать только индивиды, а некоторые — и индивиды, и классы, рассматриваемые в качестве индивидов. Среди последних особый интерес представляют классы, содержащие себя в качестве собственных элементов. Например, класс чайных ложек сам чайной ложкой не является, он состоит только из индивидов, а класс всех предметов, не являющихся чайными ложками, сам не будет являться чайной ложкой и, следовательно, будет являться членом самого себя. Образование классов последнего типа зависит от возможности образования таких функций, которые могут быть собственными аргументами. Рассмотрим еще один пример. Возьмем класс последнего типа, а именно класс всех тех классов, которые не являются элементами самих себя (в функциональном выражении ‘класс, не являющийся элементом самого себя (х)’). Если мы зададимся теперь вопросом о том, можно ли рассматривать сам этот класс как удовлетворяющий соответствующую себе функцию, получится противоречие. В самом деле, если он ее удовлетворяет, то он не должен содержаться в себе самом, а если он ее не удовлетворяет, то он должен содержаться в себе самом.
Противоречие демонстрирует неприемлемость такого понимания функции и аргумента, которое имеет место у Фреге, но это еще не означает, что неверна функциональная трактовка логической структуры высказывания. Для решения парадокса Рассел разрабатывает так называемую теорию типов, которая по существу сводится к ограничениям, накладываемым на образование классов, а стало быть, и соответствующих высказывательных (пропозициональных) функций. Так, например, он пишет: «Общность классов в мире не может быть классом в том же самом смысле, в котором последние являются классами. Так мы должны различать иерархию классов. Мы будем начинать с классов, которые всецело составлены из индивидов, это будет первым типом классов. Затем мы перейдем к классам, членами которых являются классы первого типа: это будет второй тип. Затем мы перейдем к классам, членами которых являются классы второго типа; это будет третий тип и т.д. Для класса одного типа никогда невозможно быть или не быть идентичным с классом другого типа»[5] . На образование классов необходимо накладывать ограничения, запретив образовывать классы, которые могли бы выступать в качестве своих собственных элементов. Классы должны образовывать строгую иерархию, где первый уровень представляли бы собой классы, содержащие только индивиды, второй уровень – классы, содержащие классы индивидов, третий уровень – классы, содержащие классы классов индивидов, и т.д. Разные уровни требуют различных средств выражения; то, что можно сказать об индивидах, нельзя сказать об их классах, а то, что можно сказать о классах индивидов, нельзя сказать о классах классов индивидов и т.д. В общем, это и составляет сущность теории типов.
В применении к высказывательным функциям это означает, что ни одна функция не может быть применена к самой себе; то, что рассматривается в качестве аргумента, никогда не должно становиться функцией, и наоборот, на одном и том же уровне. Последнее требование закрепляется Расселом в теории удовлетворительного символизма. Зафиксировать тип – значит зафиксировать соответствующий тип символа, указывающий на соответствующее значение. С точки зрения Рассела, к парадоксам приводит смешение различных типов, которого необходимо избегать. При таком подходе, очевидно, отпадает надобность в оценке контекста целостного высказывания. Значение символа должно заранее определяться словарем, который сконструирован иерархическим образом согласно типам, а правила образования выражений накладывают ограничения на использование словаря.
Теория типов становится для Рассела универсальным методом решения парадоксов, не только обнаруженных им самим, но и известных с давних времен. Возьмем, например, парадокс лжеца. Если некто высказывает утверждение “Я сейчас лгу”, то с традиционной точки зрения, при попытке определить истинностное значение этого утверждения мы всегда придем к противоречию. Действительно, поскольку он лжет, то ложным должно быть и высказанное им утверждение; но, учитывая его содержание, мы тогда должны сказать, что оно истинно. Если же его утверждение истинно, то, согласно утверждаемому содержанию, оно говорит о своей собственной ложности и, стало быть, является ложным. В любом случае возникает противоречие. Но, используя теорию типов, Рассел решает этот парадокс, разводя по разным уровням высказывания, о которых говорит это утверждение, и само это утверждение[6] . С точки зрения теории типов, человек, утверждающий, что он лжет, имеет в виду ложность по крайней мере одного высказывания из класса высказываний, охватываемых его утверждением. Но само его утверждение не должно включаться в этот класс, поскольку оно относится к более высокому типу. Поэтому истинностная оценка должна релятивизироваться относительно типа высказанных утверждений. Любое утверждение о высказываниях n -го типа само будет относиться к n +1 типу и не должно включаться в класс оцениваемых высказываний.
Символическая система Фреге не удовлетворяет требованиям теории типов, поэтому в ней и можно сформулировать парадоксальные утверждения.
... той и другой культуре и определенной отрешенности от обеих12. * * * Заключая разговор о двух великих интеллектуальных традициях Востока, сделаем основные выводы, существенные для замысла этой книги. Обратившись лицом к китайской философской мысли, современная философия может найти в ней совершенно иную модель развития философского умозрения, породившего дискурс, сохранивший исходную модель ...
... возникла в 1837 году, с публикацией " Wissenschaftslehre " Больцано. Однако, с его точки зрения, начало собственно аналитического движения связано со вторым этапом аналитической философии, уже в XX веке — начиная с оккупации Варшавы в 1939, и в нем основную роль Саймонс отводит польской философии в период между двумя мировыми войнами, состоящей из определенной комбинации логического платонизма и ...
... скрытого смысла, искомого философией, и сама философия неправильно следует в своих собственных стандартах строгости, на которых основывается философия математики, за этой самой математикой. Ясно, что с классической философией математики что-то не так, но в поисках нового дыхания этой фундаментальной области философии требуется ответить на упреки гуманистической математики. Таким ответом является ...
... Замечат. С.: Полемон, Герод Аттик, Аристид, Либаний. Ср. Schmid, "Der Atticismus in seinen Hauptvertretern" (1887-97). 17. Принцип детерминизма в философии. Индетерминизм. Детерминизм (от лат. determino - определяю), философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и ...
0 комментариев