5 РАСЧЕТ СИСТЕМЫ ВЕНТИЛЯЦИИ

В канальных системах естественной вытяжной вентиляции воздух пе­ремещается в каналах и воздуховодах под действием естественного дав­ления, возникающего вследствие разности давлений холодного наруж­ного и теплого внутреннего воздуха.

Естественное давление Δре Па, определяют по формуле:

, (5.1)

где hi – высота воздушного столба, принимаемая от центра вытяжного отверстия до устья вытяжной шахты, м;

ρн, ρв – плотность соответственно наружного и внутреннего воздуха, кг/м3.

Аэродинамический расчет воздуховодов (каналов) выполняют по таблице или номограммам, составленным для стальных воздуховодов круглого сечения при ρв = 1,205 кг/м3, tв = 20 °С. В них взаимосвязаны величины L, R, w, hw и d.

Чтобы воспользоваться таблицей или номограммой для расчета воздуховода прямоугольного сечения, необходимо предварительно определить соответствующую величину равновеликого (эквивалентно­го), диаметра, т.е. такого диаметра круглого воздуховода, при котором для той же скорости движения воздуха, как и в прямоугольном воздуховоде, удельные потери давления на трение были бы равны. Диаметр определяется по; формуле:

, (5.2)

где a, b – размеры сторон прямоугольного воздуховода, м.

Аксонометрическая схема вентиляции представлена на рисунке 6.

Описание: D:\Documents and Settings\SheV\Рабочий стол\ЭСОЖ\Фрагмент3.jpg

Рисунок 6 Аксонометрическая схема системы вентиляции

Таблица 5 Расчёт местных сопротивлений

№ участка Характер сопротивления ξ Σξ
1 жалюзийно-декоративная решётка с внутренними подвижными жалюзи 1,21 2,25
колено с изменением сечения 1,04
2 прямоугольный тройник на проход 0,6 0,6
3 тройник на всасывание 0,8 0,8
4 диффузор с зонтом 0,7 0,7
5 жалюзийно-декоративная решётка с внутренними подвижными жалюзи 1,21 2,25
колено с изменением сечения 1,04
6 прямоугольный тройник на проход 0,6 0,6
7 тройник на всасывание 0,8 0,8
8 жалюзийно-декоративная решётка с внутренними подвижными жалюзи 1,21 2,31
прямоугольный тройник на ответвление 1,1
9 жалюзийно-декоративная решётка с внутренними подвижными жалюзи 1,21 2,31
прямоугольный тройник на ответвление 1,1

Из таблицы VII.7 [5] определяем, что часовой объём вентилируемого воздуха, м3/ч.

Это значение принимаем в качестве расчётного.

Вытяжная решётка будет находиться на высоте 2,2 м над уровнем пола.

Для определения площади сечения канала на данном участке задаёмся скоростью движения воздуха по таблице 4.1 [6], м/с.

Площадь поперечного сечения канала, м2, определяется по формуле:

, (5.3)

Принимаем размеры поперечного сечения прямоугольного канала, м.

Уточним скорость движения воздуха на участке:

, (5.4)

Эквивалентный диаметр участка:

, (5.5)

где а, b – размеры поперечного сечения прямоугольного канала, мм.

По номограмме, приложение 1 [6] определяем удельную потерю давления на трение, Па/м.

Потери давления на трение на участке с учётом шероховатости:

 

, (5.6)

где - коэффициент шероховатости материала канала, для шлакобетонных плит  таблица III.5 [5];

Определим сумму коэффициентов местных сопротивлений на участке по таблице 6.

Из приложения 1 [6] по скорости воздуха определяем динамическое давление, Па.

Потери давления на местные сопротивления участка:

, (5.7)

Общие потери давления на участке, Па:

. (5.8)

Результаты расчёта системы вентиляции представлены в таблице 6.

Располагаемое давление, Па, в естественной вытяжной системе вентиляции определяется по формуле:

, (5.9)

где h – расстояние по вертикали от оси вытяжной решетки до устья вытяжной шахты, м,

Для второго этажа h = 1,6 м;

Для первого этажа h = 4,3 м;

 – плотность наружного воздуха, кг/м3, при температуре 5 °С, ;

– плотность внутреннего воздуха, кг/м3, при °С, ;

Па.

Па.

Сравним полученные потери на участке 1,2,3,4 с располагаемым давлением: 1,026 Па = 2,7 Па, следовательно, условие естественной вентиляции PРАСП.≥Rl+Z = ΔP выполняется.

На участке 5,6,7,4: 0,969 Па < 1,37 Па;

На участке 8,7,4: 0,978 Па < 2,7 Па;

На участке 9,3,4: 0,921 Па < 1,37 Па;

Все условия выполняются.


№ участка

Расход воздуха L, м3

Длинна участка l, м Скорость воздуха на участке w, м/с

Площадь поперечного сечения воздухо-вода f, м2

Разме-ры воздуховода, м

Эквивалентный диаметр dэ, м

Удель-ная потеря давления на трение R, Па/м Потеря давле-ния на трение Rl*β, Па Сумма коэффициентов местных сопротивлений Σζ

Динами-ческий напор hw, Па

Потеря давления на местные сопротив-ления Z=Σζ·hw,Па

Полные потери давления ΔP, Па
а b
1 50 4,3 0,43 0,03 0,16 0,2 0,178 0,018 0,091 2,25 0,117 0,262 0,354
2 50 0,5 0,35 0,04 0,2 0,2 0,2 0,018 0,011 0,6 0,075 0,045 0,055
3 100 0,5 0,69 0,04 0,2 0,2 0,2 0,018 0,011 0,8 0,299 0,239 0,249
4 200 1,2 0,89 0,06 0,25 0,25 0,25 0,018 0,025 0,7 0,489 0,342 0,368
Сумма потерь по участку 1,2,3,4 1,026
5 50 1,6 0,43 0,03 0,16 0,2 0,178 0,018 0,034 2,25 0,117 0,262 0,296
6 50 0,5 0,35 0,04 0,2 0,2 0,2 0,018 0,011 0,6 0,075 0,045 0,055
7 100 0,5 0,69 0,04 0,2 0,2 0,2 0,018 0,011 0,8 0,299 0,239 0,249
Сумма потерь по участку 5,6,7,4 0,969
8 50 4,3 0,43 0,03 0,16 0,2 0,178 0,018 0,091 2,31 0,117 0,269 0,361
Сумма потерь по участку 8,7,4 0,978
9 50 1,6 0,43 0,03 0,16 0,2 0,178 0,018 0,034 2,31 0,117 0,269 0,303
Сумма потерь по участку 9,3,4 0,921

Таблица 6 Расчёт смистемы вентиляции


6 ВЫБОР ЦИРКУЛЯЦИОННОГО НАСОСА

Для подбора циркуляционного насоса необходимо знать требуемую его подачу и расчётное давление. Требуемая подача насоса Vнac, м3/ч, определяется тепловой нагрузкой обслуживаемой системы отопления ΣQ, Вт, и перепадом температуры воды .

, (6.1)

где α – коэффициент запаса, учитывающий бесполезные потери тепла, α= 1,1…1,2;

с – теплоемкость воды, кДж/(кг·К);

ρ70 – плотность воды, кг/м3;

м3/ч.

Давление, создаваемое циркуляционным насосом, должно быть достаточным для преодоления всех сопротивлений движению воды в системе и принимается по потерям давления в самом невыгодном циркуляционном кольце:

 Па= 4,954 кПа.

; (6.2)

 м.

Насосы подбирают по их рабочим характеристикам, которые приведены в справочниках по санитарной технике и в каталогах заводов-изготовителей.

По требуемой подаче и давлению выбираем насос типа UPS 25-20 [4].

Характеристики насоса приведены в таблице 7.

Таблица 7 Характеристики насоса

Производительность, м3

Полный напор Н,м. Скорость

Р1, Вт.

Iп, А

1,7 1,2 3 55 0,24

 


 


Информация о работе «Отопление и вентиляция гражданского здания»
Раздел: Строительство
Количество знаков с пробелами: 35343
Количество таблиц: 8
Количество изображений: 5

Похожие работы

Скачать
32345
5
4

... 6,08 Определим невязку в большом и малом циркуляционном кольцах. %. Невязка допустима. Для водяного отопления с искусственной циркуляцией в котельной устанавливаются два одинаковых попеременно работающих центробежных насос – рабочий и резервный. 8. Расчет системы вентиляции В канальных системах естественной вытяжной вентиляции воздух перемещается в каналах и воздуховодах под действием ...

Скачать
55818
9
1

... является показателем тепловой эффективности зданий, который обеспечивается соблюдением требований к теплозащитным свойствам ограждающих конструкций, проектными решениями архитектурно – строительной части зданий, систем отопления и вентиляции, способом регулирования подачи теплоты, качеством выполнения строительно – монтажных работ и техническим уровнем эксплуатации зданий и систем теплоснабжения. ...

Скачать
49247
20
4

... 100,29 109,29 6 4560 157,091 5,1 20 0,50029 0,75 3,825 2,5 306,12 325,63 7 2660 91,6364 7,1 20 0,29184 0,5 3,55 1,5 62,50 87,71 Итого: 1190,24 6. Вентиляция здания 6.1 Определение воздухообмена в помещении Устройство системы вентиляции жилых зданиях необходимо для возможности удаления избытков тепла, влаги и вредных газов, выделяемых в помещении. В данной работе ...

Скачать
26719
6
0

... Скорость воздуха, м/с 1 - 4 1.2 Расчётные параметры внутреннего воздуха Параметры внутреннего воздуха для проектирования вентиляции в животноводческих зданиях в холодный и переходный периоды принимаются по Приложению 1 “Отопление и вентиляция животноводческих комплексов и ферм” составитель А.И. Кирюшатов для конкретного объекта строительства. В теплый расчётный период температура ...

0 комментариев


Наверх