2 АНАЛИЗ ИЗВЕСТНЫХ РАЗРАБОТОК ПО ТЕМЕ ДИПЛОМНОГО ПРОЕКТА
Патентный поиск
Целью патентных исследований является получение исходных данных для обеспечения высокого технического уровня и конкурентоспособности объектов техники, для использования современных объектов НТП и исключения неоправданного дублирования исследований и разработок.
Частью патентных исследований является патентный поиск. Поиск проводится для проверки патентоспособности технического решения, установления уровня техники и патентной чистоты объекта, определения условий реализации прав патентообладателя и т. д.
Различают несколько видов патентного поиска:
первый вид:
тематический (предметный) поиск наиболее распространен, его проводят для выявления изобретений (промышленных образцов, товарных знаков), имеющих отношение к исследуемому вопросу.
второй вид:
именной (тематический) поиск направлен на обнаружение документов конкретного лица (фирмы). Чаще всего он является этапом тематического поиска.
третий вид:
нумерационный поиск имеет целью установить ряд обстоятельств, касающихся конкретного охранного документа: его тематической принадлежности, связи с другими документами, правового статуса.
С целью выяснения патентной чистоты проектируемого модуля был проведен патентный поиск глубиной 3 года в результате которого был обнаружен аналог на территории стран СНГ.
Анализ информации, полученной из сети INTERNET, показал, что подобные усторойства разрабартывались в Марийском ГТУ (г. Йошкар - Ола) и НИРФИ (г. Нижний Новгород).
Сигнал с линейной частотной модуляцией (л.ч.м.) применяли в ионозонде для исследования ионосферы в к.в. – диапазоне. Центральное местоо в этом радиокомплексе занимают цифровые синтезаторы л.ч.м. – сигналов, которые должны быть когерентными между собой для зондирования ионосферного к.в. – канала связи с высокой разрешающей способностью по времени группового запаздывания.
Разработанные цифровые синтезаторы частотно – модулированных сигналов были предназначены для работы в качестве возбудителя передатчика и гетеродина приемника в составе л.ч.м. – ионозонда.
Для решения задач диагностики ионосферы требуется шаг перестройки не более 0.1 Гц, но в связи с тем, что частота выходного колебания цифрового синтезатора в данной системе умножатся в 16 раз, минимальный шаг по частоте в диапазоне частот до 5 МГц не должен был превышать 0.1/16 это примерно равно 0.006 Гц.
Допустимое время переключения частоты колеблется в широких пределах в зависимости от назначения синтезатора. В частности, при использовании синтезатора в связном приемнике на различных частоотах время переключения может быть порядка секунды; при переключении частот здесь допустимы не только скачки фазы, но и полное кратковременное пропадание сигнала. С другой стороны , при использовании цифрового синтезатора частот в адаптивном радиокомплексе в кольце петли фазовой автоподстройки частоты желательно полное отсутствие переходных процессов при переключении частот (нулевое время переключения).
3. РАЗРАБОТКА КОНСТРУКЦИИ ЦИФРОВОГО СИНТЕЗАТОРА Ч.М. - СИГНАЛОВ
Расчет показателей надежности устройства
Проблема обеспечения надежности связана со всеми этапами создания изделия и всем периодом его практического использования. Надежность изделия в основном закладывается в процессе его конструирования и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля качества исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления. Надежность обеспечивается применением правильных способов хранения изделия и поддерживается правильной эксплуатацией, планомерным уходом, профилактическим контролем и ремонтом. Принимая во внимание выше сказанное, следует определить необходимость специальных мер для повышения или же для стабилизации показателей надежности [8].
В зависимости от назначения объекта и условий его эксплуатации, надежность может включать безотказность, долговечность, ремонтопригодность и сохраняемость. Для конкретных же объектов и условий эксплуатации эти свойства могут иметь различную относительную значимость. Применительно к цифровому синтезатору частотно – модулированных сигналов, наиболее часто употребляются следующие показатели надежности:
- вероятность безотказной работы - вероятность того, что в пределах заданной наработки, отказ объекта не возникнет;
- средняя наработка на отказ - отношение суммарной наработки объекта к математическому ожиданию числа отказов в течение этой наработки
- заданная наработка (заданное время безотказной работы) - наработка, в течение которой объект должен безотказно работать для выполнения своих функций;
- интенсивность отказов - вероятность отказов неремонтируемого изделия в единицу времени после заданного момента времени при условии, что до этого отказ не возникал. Другими словами - это число отказов в единицу времени отнесенное к среднему числу элементов, исправно работающих в данный момент времени.
Оперируя этими понятиями можно судить о надежностных характеристиках изделия. Итак, произведем расчет, приняв следующие допущения:
-отказы случайны и независимы;
-учитываются только внезапные отказы;
-имеет место экспоненциальный закон надежности.
Последнее допущение основано на том, что для аппаратуры, в которой имеют место только случайные отказы, действует экспоненциальный закон распределения - закон Пуассона - и вероятность работы в течение времени равна:
(3. 1)
Учитывая то что с точки зрения надежности все основные функциональные узлы и элементы в изделии соединены последовательно и значения их надежностей не зависят друг от друга, т.е. выход из строя одного элемента не меняет надежности другого и приводит к внезапному отказу изделия, то надежность изделия в целом определяется как произведение значений надежности для отдельных элементов [8]:
(3.2)
С учетом (3.1) получим:
(3.3)
где - интенсивность отказов -го элемента с учетом режима и условий работы.
Учет влияния режима работы и условий эксплуатации изделия при расчетах производится с помощью поправочного коэффициента - коэффициента эксплуатации и тогда в формуле (3.4) выразится как:
(3.4)
где - интенсивность отказов - го элемента при лабораторных условиях работы и коэффициенте электрической нагрузки .
Для точной оценки нужно учитывать несколько внешних и внутренних факторов: температуру корпусов элементов; относительную влажность; уровень вибрации, передаваемый на элементы и т.д. С этой целью может быть использовано следующее выражение:
, (3.5)
где - поправочный коэффициент, учитывающий -ый фактор;
- поправочный коэффициент, учитывающий влияние температуры;
- поправочный коэффициент, учитывающий влияние электрической нагрузки;
- поправочный коэффициент, учитывающий влияние влажности;
- поправочный коэффициент, учитывающий влияние механических воздействий.
Все определяются из справочных зависимостей и таблиц, где они приведены в виде и , как объединенные с и с .
После этого можно определить значение суммарной интенсивности отказов элементов изделия по формуле:
, (3.6)
где - число элементов в группе;
- интенсивность отказа элементов в -ой группе;
- коэффициент эксплуатации элементов в -ой группе;
- общее число групп.
Исходные данные по группам элементов, необходимые для расчета показателей надежности приведены в табл. 3.1 Значения интенсивностей отказов взяты из справочников.
Таблица 3.1 - Справочные и расчетные данные об элементах конструкции
гр. | Наименование группы | 1/ч | 1/ч | ч | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | Резисторы | 9 | 0.06 | 1.71 | 1.07 | 1.83 | 2.75 | 0.8 | 0.03 |
2 | Конденсаторы | 4 | 0.15 | 0.35 | 1.07 | 0.38 | 0.97 | 1.1 | 0.01 |
3 | Диодный мост | 1 | 0.4 | 1.08 | 1.07 | 1.16 | 0.46 | 0.4 | 0.01 |
4 | Микросхемы | 27 | 0.02 | 0.7 | 1.07 | 0.75 | 0.05 | 0.5 | 0.01 |
5 | Трансформатор | 1 | 0.025 | 3.0 | 1.07 | 3.21 | 0.08 | 2.1 | 0.01 |
6 | Переключатель сетевой | 1 | 0.4 | 0.8 | 1.07 | 0.86 | 0.34 | 1.2 | 0.01 |
7 | Разъем (20 выв. ) | 3 | 0.4 | 0.7 | 1.07 | 75 | 0.3 | 6 | 0.01 |
8 | Разъем (40 выв. ) | 1 | 3.2 | 0.7 | 1.07 | 0.75 | 4.8 | 2 | 0.6 |
9 | Предохранитель плавкий | 1 | 0.5 | 0.5 | 1.07 | 0.54 | 0.27 | 1 | 0.1 |
10 | Шнур питания | 1 | 4.0 | 0.5 | 1.07 | 0.54 | 16 | 9 | 03 |
11 | Держатель предохранителя | 1 | 0.2 | 0.7 | 1.07 | 0.75 | 15 | 3 | 01 |
12 | Провода соединительные | 35 | 0.3 | 0.8 | 1.07 | 0.86 | 9.29 | 0.3 | 11 |
13 | Соединения пайкой | 341 | 0.1 | 0.8 | 1.07 | 0.86 | 9.3 | 1.2 | 0.36 |
14 | Плата печатная | 1 | 0.2 | 0.6 | 1.07 | 0.64 | 13 | 3.2 | 0.01 |
15 | Несущая конструкция РЭА | 1 | 3.0 | 0.6 | 1.07 | 0.64 | 92 | 3 | 0.02 |
16 | Соединения винтами | 30 | 0.001 | 0.6 | 1.07 | 0.64 | 0.2 | 5 | 0.01 |
Воспользовавшись данными табл. 3.1 по формуле (3.6) можно определить суммарную интенсивность отказов :
1/час.
Далее найдем среднюю наработку на отказ , применив следующую формулу:
(3.7)
Итак, имеем:
часов.
Вероятность безотказной работы определяется исходя из формулы (3.3), приведенной к следующему виду:
, (3.8)
где время безотказной работы.
Итак, имеем:
Среднее время восстановления определяется последующей формуле [8]:
, (3.9)
где -вероятность отказа элемента i-ой группы;
- случайное время восстановления элемента i-ой группы.
подставив значения в формулу (3.9), получим среднее время восстановления =0.877ч. Далее можно определить вероятность восстановления по формуле:
, (3.10)
где =0.72ч.
Следовательно по формуле (3.10) определим , что больше .
Таким образом, полученные данные удовлетворяют требованиям по надежности, так как при заданном времени непрерывной работы ч проектируемый блок будет работать с вероятностью . При этом он будет иметь среднюю наработку на отказ ч и вероятность восстановления следовательно, дополнительных мер по повышению надежности цифрового синтезатора ч.м. - сигналов не требуется.
Расчет массы изделия
Рассчитаем габаритные размеры, объем и массу изделия по формулам:
V = *, (3.11)
M = Km * , (3.12)
M = M' * V,(3.13)
Здесь V, M – общий объем и масса изделия;
kv – обобщенный коэффициент заполнения объема изделия элементами
Vi,Mi – значения установочных объемов и массы i-х элементов конструкции;
Km – обобщенный коэффициент объемной массы изделия;
М' – объемная масса аппарата;
n – общее количество элементов конструкции изделия.
Исходными данными для расчета являются:
1) количество элементов в блоке;
2) установочная площадь каждого элемента;
3) установочный объем каждого элемента;
4) установочный вес каждого элемента;
5) количество деталей;
6) объем блока;
7) вес блока;
8) количество наименований деталей;
9) линейные размеры.
kv возьмем равным 0.55. Для прибора можно принять Мў=0.4кг/дм3.
Сведения об установочных размерах элементов и их массе сведены в таблицу 3.2
Таблица 3.2
Значение установочного объема и массы элементов изделия
Наименование элемента | Кол-во | Vi,мм3 | Мi,гр. |
1 | 2 | 3 | 4 |
1.Плата: | |||
Резистор МЛТ–0.25 | 9 | 1865 | 2.2 |
Конденсатор К53-1А | 4 | 2016 | 6 |
Микросхема 533ТЛ2 | 2 | 1320 | 2.3 |
Микросхема 533АГ3 | 2 | 1210 | 1.9 |
Микросхема 533ЛА3 | 2 | 1150 | 1.7 |
Микросхема 573РФ2 | 6 | 1920 | 3.1 |
Микросхема 533ИК4 | 4 | 1310 | 2.1 |
Микросхема КМ1118ПА2А | 1 | 1540 | 3.3 |
Микросхема К1518ВЖ1 | 1 | 2320 | 4.3 |
Микросхема 533ЛП5 | 3 | 1410 | 2.8 |
Микросхема 1108ПА1А | 1 | 1830 | 3.2 |
Плата | 1 | 39400 | 43.4 |
2.Плата сетевая | 1 | 19200 | 19.2 |
3.Тумблер | 2 | 17640 | 24 |
4.Разьем | 4 | 7500 | 50 |
5.Трансформатор | 1 | 126000 | 500 |
6.Разьем | 4 | 7500 | 50 |
7.Ручка | 2 | 2386 | 5 |
8.Панель | 1 | 16500 | 50 |
Суммарный объем, занимаемый всеми элементами конструкции, посчитанный по табличным данным составляет
=2058625мм3
По формуле (4.1.1)определяем ориентировочный объем блока
V=6548000мм3
Согласно проведенным расчетам выбираем габаритные размеры блока 320х245х150 мм.
По формуле (3.12) определяем ориентировочную массу блока:
М =2.426 кг
В соответствии с ТЗ масса блока должна быть не более 3 кг.
По результатам расчета можно сделать вывод: полученные данные расчета вполне удовлетворяют требованиям технического задания. Коэффициент использования объема равен 0.55 потому.
Расчет теплового режима
Все компоненты блока сопряжения функционируют в строго ограниченном температурном диапазоне. Выход температуры за предельно допустимые пределы может привести к необратимым структурным изменениям. Высокая надёжность и длительный срок службы ЭВА будут гарантированы, если температура среды внутри конструкции нормальная (15±5°C) и изменяется не более чем на 2°C в час. Для выполнения этого условия необходимо выбрать оптимальную систему охлаждения.
Приведем методику методику расчета.
Исходными данными для выбора охлаждения являются:
1) суммарная мощность P, рассеиваемая в конструктивном модуле;
2) давление окружающей среды;
3) давление внутри блока;
4) коэффициент заполнения блока;
5) габаритные размеры блока;
6) время непрерывной работы t.
Приведем порядок расчета блока в герметичном корпусе:
1) рассчитывается поверхность корпуса блока по формуле:
Sк=2[l1*l2+(l1+l2)*l3],(3.13)
где l1,l2 – горизонтальные размеры корпуса;
l3 – вертикальный размер корпуса.
2) определяется условная поверхность нагретой зоны по формуле
Sк=2[l1*l2+(l1+l2)*l3*Кз], (3.14)
где Кз – коэффициент заполнения.
3) определяется удельная мощность корпуса по формуле:
qк=Рз/Sк (3.15)
где Рз – мощность, рассеиваемая нагретой зоной.
4) рассчитывается удельная мощность нагретой зоны
qз=Рз/Sз (3.16)
5) находится коэффициент J1 в зависимости от удельной мощности корпуса блока
J1=0.1472*qк-0.2962*10-3*qк2+0.3127*10-6*qк3 (3.17)
6) находится коэффициент J2 в зависимости от удельной мощности нагретой зоны:
J2=0.1390*qз-0.1223*10-3*qз2+0.0698*10-6*qз3 (3.18)
7) находится коэффициент Кн1 в зависимости от давления среды вне корпуса блока :
Кн1=0.82+,(3.19)
где Н1 – величина атмосферного давления вне корпуса.
8) находится коэффициент Кн2 в зависимости от давления среды внутри корпуса блока Н2
Кн2=0.8+, (3.20)
9) определяется перегрев корпуса:
Jк=J1*Кн1. (3.21)
10) рассчитывается перегрев нагретой зоны:
Jз=Jк+(J2–J1)*Кн2. (3.22)
11) определяется средний перегрев воздуха в блоке:
Jв=0.5*(Jк+Jз)(3.23)
12) определяется удельная мощность элемента:
qэл=Рэл/Sэл(3.24)
где Рэл – мощность, рассеиваемая элементом, температуру которого требуется определить;
Sэл – площадь поверхности элемента, омываемая воздухом.
13) рассчитывается перегрев поверхности элементов:
Jэл=Jз(а+b*qэл/qз) (3.25)
14) рассчитывается перегрев окружающей элемент среды:
Jэ-с=Jв(0.75+0.25*qэл/qз)(3.26)
15) определяется температура корпуса блока:
Тк=Jк+Тс (3.27)
где Тс – температура окружающей среды;
16) определяется температура нагретой зоны:
Тз=Jз+Тс (3.28)
17) определяется температура поверхности элемента:
Тэл=Jэл+Тс(3.29)
18) находится средняя температура воздуха в блоке:
Тв=Jв+Тс(3.30)
19) рассчитывается температура окружающей среды:
Тэ-с=Jэ-с+Тс (3.31)
Расчет конструкции на виброзащищенность
Для того чтобы проверить насколько хорошо защищено проектируемое устройство от механических воздействий, необходимо провести расчет собственной частоты вибраций платы. В данном случае плата является единственной колебательной системой. Жесткость платы зависит от материала, формы, геометрических размеров и способа закрепления.
Печатная плата имеет прямоугольную форму следующих размеров:
axbxh=280 мм x 150 мм x 1.5 мм
При расчете собственной частоты вибрации печатной платы используют следующие допущения:
плата представляется в виде модели распределенными массами и упругими демпфирующими связями;
ЭРЭ на плате располагаются равномерно на ее поверхности;
плата с элементами принимается за тонкую пластину, так как b/h<0,1, толщина платы принимается постоянной, h = const;
материал платы однородный, идеально упругий, изотропный;
возникающие изгибные деформации малы по сравнению с толщиной платы;
при изгибе платы нейтральный слой не подвергается деформации растяжения (сжатия).
Для пластин с четырьмя точками крепления частота собственных колебаний платы, определяется по формуле:
, (3.11)
где a = 0,28 м. длинна платы;
b = 0,15 м. ширина платы;
цилиндрическая жесткость платы, ;
;
распределенная по площади масса платы и элементов, .
Цилиндрическая жесткость платы определяется по формуле:
(3.12)
где - модуль упругости материала платы;
- толщина платы;
- коэффициент Пуассона.
(3.13)
Распределенная по площади масса платы и элементов определяется из выражения:
, (3.14)
где - удельная плотность материала платы;
- масса элементов, установленных на плате, .
, (3.15)
где - масса i - го элемента, установленного на плате, ;
n = 40 - количество элементов, установленных на плате.
Воспользовавшись справочными данными получим
mэ = 104,2´10 –3 кг. следовательно,
Подставляя найденные величины в формулу (4.2.1), определим минимальную частоту собственных колебаний платы. Она будет минимальной при , .
В результате механических воздействий печатная плата подвержена усталостному разрушению, в особенности при возникновении механического резонанса. Чаще всего усталостные отказы проявляются в виде обрыва проводников, разрушения паяных соединений, нарушения контактов в разъемах. Подобные разрушения можно предотвратить, если обеспечить выполнение условия
(3.16)
где - минимальная частота собственных колебаний платы;
- ускорение свободного падения, g = 9,8м/c2;
- безразмерная постоянная, выбираемая в зависимости от частоты собственных колебаний и воздействующих ускорений.
- максимальные вибрационные перегрузки, выраженные в единицах g.
Следовательно,
¦min 85Гц
Значит, проектируемая плата будет иметь достаточную усталостную прочность при гармонических вибрациях.
Определим эффективность виброзащиты по формуле:
, (3.17)
где - верхняя частота диапазона воздействующих частот, Гц;
- резонансная колебаний печатной платы, Гц.
Подставив значения, получим:
.
Таким образом, можно сказать, что спроектированное устройство на 44% защищено от вибрационных воздействий.
... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...
... – 3 0,1; 0,2; 0,4; 1; 2; 4 N8974A 0,01 – 6.7 0,1; 0,2; 0,4; 1; 2; 4 N8975A 0,01 – 26.5 0,1; 0,2; 0,4; 1; 2; 4 Таблица 4.3 - Технические особенности ИКШ серии NFА Структурная схема измерителя коэффициента шума N8973A представлена на рисунке 4.4. Рисунок 4.4 - Структурная схема ИКШ N8973A В преобразователе частот (блок радиоприемного тракта) спектр входного сигнала сначала ...
... также невысока и обычно составляет около 100 кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI. Лекция 3. Программное обеспечение ПЭВМ 3.1 Общая характеристика и состав программного обеспечения 3.1.1 Состав и назначение программного обеспечения Процесс взаимодействия человека с компьютером организуется устройством управления в соответствии с той программой, которую пользователь ...
... в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах. Аппаратные средства мультимедиа: · Средства звукозаписи; · Звуковоспроизведении; · Манипуляторы; · Средства «виртуальной реальности»; · Носители информации (CD-ROM); · Средства передачи; · Средства записи; · Обработки ...
0 комментариев