АНАЛИЗ ИЗВЕСТНЫХ РАЗРАБОТОК ПО ТЕМЕ ДИПЛОМНОГО ПРОЕКТА

111585
знаков
12
таблиц
2
изображения

2 АНАЛИЗ ИЗВЕСТНЫХ РАЗРАБОТОК ПО ТЕМЕ ДИПЛОМНОГО ПРОЕКТА

 

Патентный поиск

Целью патентных исследований является получение исходных данных для обеспечения высокого технического уровня и конкурентоспособности объектов техники, для использования современных объектов НТП и исключения неоправданного дублирования исследований и разработок.

Частью патентных исследований является патентный поиск. Поиск проводится для проверки патентоспособности технического решения, установления уровня техники и патентной чистоты объекта, определения условий реализации прав патентообладателя и т. д.

Различают несколько видов патентного поиска:

первый вид:

тематический (предметный) поиск наиболее распространен, его проводят для выявления изобретений (промышленных образцов, товарных знаков), имеющих отношение к исследуемому вопросу.

второй вид:

именной (тематический) поиск направлен на обнаружение документов конкретного лица (фирмы). Чаще всего он является этапом тематического поиска.

третий вид:

нумерационный поиск имеет целью установить ряд обстоятельств, касающихся конкретного охранного документа: его тематической принадлежности, связи с другими документами, правового статуса.

С целью выяснения патентной чистоты проектируемого модуля был проведен патентный поиск глубиной 3 года в результате которого был обнаружен аналог на территории стран СНГ.

Анализ информации, полученной из сети INTERNET, показал, что подобные усторойства разрабартывались в Марийском ГТУ (г. Йошкар - Ола) и НИРФИ (г. Нижний Новгород).

Сигнал с линейной частотной модуляцией (л.ч.м.) применяли в ионозонде для исследования ионосферы в к.в. – диапазоне. Центральное местоо в этом радиокомплексе занимают цифровые синтезаторы л.ч.м. – сигналов, которые должны быть когерентными между собой для зондирования ионосферного к.в. – канала связи с высокой разрешающей способностью по времени группового запаздывания.

Разработанные цифровые синтезаторы частотно – модулированных сигналов были предназначены для работы в качестве возбудителя передатчика и гетеродина приемника в составе л.ч.м. – ионозонда.

Для решения задач диагностики ионосферы требуется шаг перестройки не более 0.1 Гц, но в связи с тем, что частота выходного колебания цифрового синтезатора в данной системе умножатся в 16 раз, минимальный шаг по частоте в диапазоне частот до 5 МГц не должен был превышать 0.1/16 это примерно равно 0.006 Гц.

Допустимое время переключения частоты колеблется в широких пределах в зависимости от назначения синтезатора. В частности, при использовании синтезатора в связном приемнике на различных частоотах время переключения может быть порядка секунды; при переключении частот здесь допустимы не только скачки фазы, но и полное кратковременное пропадание сигнала. С другой стороны , при использовании цифрового синтезатора частот в адаптивном радиокомплексе в кольце петли фазовой автоподстройки частоты желательно полное отсутствие переходных процессов при переключении частот (нулевое время переключения).


3. РАЗРАБОТКА КОНСТРУКЦИИ ЦИФРОВОГО СИНТЕЗАТОРА Ч.М. - СИГНАЛОВ

Расчет показателей надежности устройства

Проблема обеспечения надежности связана со всеми этапами создания изделия и всем периодом его практического использования. Надежность изделия в основном закладывается в процессе его конструирования и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля качества исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления. Надежность обеспечивается применением правильных способов хранения изделия и поддерживается правильной эксплуатацией, планомерным уходом, профилактическим контролем и ремонтом. Принимая во внимание выше сказанное, следует определить необходимость специальных мер для повышения или же для стабилизации показателей надежности [8].

В зависимости от назначения объекта и условий его эксплуатации, надежность может включать безотказность, долговечность, ремонтопригодность и сохраняемость. Для конкретных же объектов и условий эксплуатации эти свойства могут иметь различную относительную значимость. Применительно к цифровому синтезатору частотно – модулированных сигналов, наиболее часто употребляются следующие показатели надежности:

- вероятность безотказной работы  - вероятность того, что в пределах заданной наработки, отказ объекта не возникнет;

- средняя наработка на отказ  - отношение суммарной наработки объекта к математическому ожиданию числа отказов в течение этой наработки

- заданная наработка  (заданное время безотказной работы) - наработка, в течение которой объект должен безотказно работать для выполнения своих функций;

- интенсивность отказов  - вероятность отказов неремонтируемого изделия в единицу времени после заданного момента времени при условии, что до этого отказ не возникал. Другими словами - это число отказов в единицу времени отнесенное к среднему числу элементов, исправно работающих в данный момент времени.

Оперируя этими понятиями можно судить о надежностных характеристиках изделия. Итак, произведем расчет, приняв следующие допущения:

-отказы случайны и независимы;

-учитываются только внезапные отказы;

-имеет место экспоненциальный закон надежности.

Последнее допущение основано на том, что для аппаратуры, в которой имеют место только случайные отказы, действует экспоненциальный закон распределения - закон Пуассона - и вероятность работы в течение времени  равна:

 (3. 1)

Учитывая то что с точки зрения надежности все основные функциональные узлы и элементы в изделии соединены последовательно и значения их надежностей не зависят друг от друга, т.е. выход из строя одного элемента не меняет надежности другого и приводит к внезапному отказу изделия, то надежность изделия в целом определяется как произведение значений надежности для отдельных  элементов [8]:

 (3.2)

С учетом (3.1) получим:

 (3.3)

где - интенсивность отказов -го элемента с учетом режима и условий работы.

Учет влияния режима работы и условий эксплуатации изделия при расчетах производится с помощью поправочного коэффициента  - коэффициента эксплуатации и тогда  в формуле (3.4) выразится как:

(3.4)

где  - интенсивность отказов - го элемента при лабораторных условиях работы и коэффициенте электрической нагрузки .

Для точной оценки  нужно учитывать несколько внешних и внутренних факторов: температуру корпусов элементов; относительную влажность; уровень вибрации, передаваемый на элементы и т.д. С этой целью может быть использовано следующее выражение:

, (3.5)

где - поправочный коэффициент, учитывающий -ый фактор;

- поправочный коэффициент, учитывающий влияние температуры;

- поправочный коэффициент, учитывающий влияние электрической нагрузки;

- поправочный коэффициент, учитывающий влияние влажности;

 - поправочный коэффициент, учитывающий влияние механических воздействий.

Все  определяются из справочных зависимостей и таблиц, где они приведены в виде  и , как объединенные с  и с .

После этого можно определить значение суммарной интенсивности отказов элементов изделия по формуле:

 , (3.6)

где - число элементов в группе;

 - интенсивность отказа элементов в -ой группе;

 - коэффициент эксплуатации элементов в -ой группе;

 - общее число групп.

Исходные данные по группам элементов, необходимые для расчета показателей надежности приведены в табл. 3.1 Значения интенсивностей отказов взяты из справочников.

Таблица 3.1 - Справочные и расчетные данные об элементах конструкции

гр.

Наименование

группы

1/ч

1/ч

ч

1  2  3  4  5  6  7  8 9 10
1 Резисторы 9 0.06 1.71 1.07 1.83 2.75 0.8 0.03
2 Конденсаторы 4 0.15 0.35 1.07 0.38 0.97 1.1 0.01
3 Диодный мост 1  0.4 1.08 1.07 1.16 0.46 0.4 0.01
4 Микросхемы 27 0.02 0.7 1.07 0.75 0.05 0.5 0.01
5 Трансформатор 1  0.025  3.0 1.07 3.21 0.08 2.1 0.01
6 Переключатель сетевой 1 0.4 0.8 1.07 0.86 0.34 1.2 0.01
7 Разъем (20 выв. ) 3 0.4 0.7 1.07 75 0.3 6 0.01
8 Разъем (40 выв. ) 1 3.2 0.7 1.07 0.75 4.8 2 0.6
9 Предохранитель плавкий 1 0.5 0.5 1.07 0.54 0.27 1 0.1
10 Шнур питания 1 4.0 0.5 1.07 0.54 16 9 03
11 Держатель предохранителя 1 0.2 0.7 1.07 0.75 15 3 01
12 Провода соединительные 35 0.3 0.8 1.07 0.86 9.29 0.3 11
13 Соединения пайкой 341 0.1 0.8 1.07 0.86 9.3 1.2 0.36
14 Плата печатная 1 0.2 0.6 1.07 0.64 13 3.2 0.01
15 Несущая конструкция РЭА 1 3.0 0.6 1.07 0.64 92 3 0.02
16 Соединения винтами 30 0.001 0.6 1.07 0.64 0.2 5 0.01

Воспользовавшись данными табл. 3.1 по формуле (3.6) можно определить суммарную интенсивность отказов :

 1/час.

Далее найдем среднюю наработку на отказ , применив следующую формулу:

 (3.7)

Итак, имеем:

 часов.

Вероятность безотказной работы определяется исходя из формулы (3.3), приведенной к следующему виду:


, (3.8)

где  время безотказной работы.

Итак, имеем:

Среднее время восстановления определяется последующей формуле [8]:

, (3.9)

где -вероятность отказа элемента i-ой группы;

- случайное время восстановления элемента i-ой группы.

подставив значения в формулу (3.9), получим среднее время восстановления =0.877ч. Далее можно определить вероятность восстановления по формуле:

, (3.10)

где =0.72ч.

Следовательно по формуле (3.10) определим , что больше .

Таким образом, полученные данные удовлетворяют требованиям по надежности, так как при заданном времени непрерывной работы ч проектируемый блок будет работать с вероятностью  . При этом он будет иметь среднюю наработку на отказ  ч и вероятность восстановления  следовательно, дополнительных мер по повышению надежности цифрового синтезатора ч.м. - сигналов не требуется.

Расчет массы изделия

Рассчитаем габаритные размеры, объем и массу изделия по формулам:

V =  *, (3.11)

M = Km *  , (3.12)

M = M' * V,(3.13)

Здесь V, M – общий объем и масса изделия;

kv – обобщенный коэффициент заполнения объема изделия элементами

Vi,Mi – значения установочных объемов и массы i-х элементов конструкции;

Km – обобщенный коэффициент объемной массы изделия;

М' – объемная масса аппарата;

n – общее количество элементов конструкции изделия.

Исходными данными для расчета являются:

1)  количество элементов в блоке;

2)  установочная площадь каждого элемента;

3)  установочный объем каждого элемента;

4)  установочный вес каждого элемента;

5)  количество деталей;

6)  объем блока;

7)  вес блока;

8)  количество наименований деталей;

9)  линейные размеры.

kv возьмем равным 0.55. Для прибора можно принять Мў=0.4кг/дм3.

Сведения об установочных размерах элементов и их массе сведены в таблицу 3.2

Таблица 3.2

Значение установочного объема и массы элементов изделия

Наименование элемента Кол-во

Vi,мм3

Мi,гр.
 1 2 3 4
1.Плата:
Резистор МЛТ–0.25  9 1865 2.2
Конденсатор К53-1А 4 2016 6
Микросхема 533ТЛ2 2 1320 2.3
Микросхема 533АГ3 2 1210 1.9
Микросхема 533ЛА3 2 1150 1.7
Микросхема 573РФ2 6 1920 3.1
Микросхема 533ИК4 4 1310 2.1
Микросхема КМ1118ПА2А 1 1540 3.3
Микросхема К1518ВЖ1 1 2320 4.3
Микросхема 533ЛП5 3 1410 2.8
Микросхема 1108ПА1А 1 1830 3.2
Плата 1 39400 43.4
2.Плата сетевая 1 19200 19.2
3.Тумблер 2 17640 24
4.Разьем 4 7500 50
5.Трансформатор 1 126000 500
6.Разьем 4 7500 50
7.Ручка 2 2386 5
8.Панель 1 16500 50

Суммарный объем, занимаемый всеми элементами конструкции, посчитанный по табличным данным составляет

=2058625мм3

По формуле (4.1.1)определяем ориентировочный объем блока

V=6548000мм3

Согласно проведенным расчетам выбираем габаритные размеры блока 320х245х150 мм.

По формуле (3.12) определяем ориентировочную массу блока:

М =2.426 кг

В соответствии с ТЗ масса блока должна быть не более 3 кг.

По результатам расчета можно сделать вывод: полученные данные расчета вполне удовлетворяют требованиям технического задания. Коэффициент использования объема равен 0.55 потому.

 

Расчет теплового режима

Все компоненты блока сопряжения функционируют в строго ограниченном температурном диапазоне. Выход температуры за предельно допустимые пределы может привести к необратимым структурным изменениям. Высокая надёжность и длительный срок службы ЭВА будут гарантированы, если температура среды внутри конструкции нормальная (15±5°C) и изменяется не более чем на 2°C в час. Для выполнения этого условия необходимо выбрать оптимальную систему охлаждения.

Приведем методику методику расчета.

Исходными данными для выбора охлаждения являются:

1)  суммарная мощность P, рассеиваемая в конструктивном модуле;

2)  давление окружающей среды;

3)  давление внутри блока;

4)  коэффициент заполнения блока;

5)  габаритные размеры блока;

6)  время непрерывной работы t.

Приведем порядок расчета блока в герметичном корпусе:

1)  рассчитывается поверхность корпуса блока по формуле:

Sк=2[l1*l2+(l1+l2)*l3],(3.13)

где l1,l2 – горизонтальные размеры корпуса;

l3 – вертикальный размер корпуса.

2)  определяется условная поверхность нагретой зоны по формуле

Sк=2[l1*l2+(l1+l2)*l3з], (3.14)

где Кз – коэффициент заполнения.

3)  определяется удельная мощность корпуса по формуле:

qк=Рз/Sк (3.15)

где Рз – мощность, рассеиваемая нагретой зоной.

4) рассчитывается удельная мощность нагретой зоны

qз=Рз/Sз (3.16)

5) находится коэффициент J1 в зависимости от удельной мощности корпуса блока

J1=0.1472*qк-0.2962*10-3*qк2+0.3127*10-6*qк3 (3.17)

 

6)  находится коэффициент J2 в зависимости от удельной мощности нагретой зоны:

J2=0.1390*qз-0.1223*10-3*qз2+0.0698*10-6*qз3 (3.18)

7)  находится коэффициент Кн1 в зависимости от давления среды вне корпуса блока :

Кн1=0.82+,(3.19)

где Н1 – величина атмосферного давления вне корпуса.

8)  находится коэффициент Кн2 в зависимости от давления среды внутри корпуса блока Н2

Кн2=0.8+, (3.20)

9) определяется перегрев корпуса:

 

Jк=J1*Кн1. (3.21)

10) рассчитывается перегрев нагретой зоны:

Jз=Jк+(J2–J1)*Кн2. (3.22)

11) определяется средний перегрев воздуха в блоке:

Jв=0.5*(Jк+Jз)(3.23)

 

12) определяется удельная мощность элемента:

qэл=Рэл/Sэл(3.24)

где Рэл – мощность, рассеиваемая элементом, температуру которого требуется определить;

Sэл – площадь поверхности элемента, омываемая воздухом.

13) рассчитывается перегрев поверхности элементов:

 

Jэл=Jз(а+b*qэл/qз) (3.25)

14) рассчитывается перегрев окружающей элемент среды:

Jэ-с=Jв(0.75+0.25*qэл/qз)(3.26)

15) определяется температура корпуса блока:

Тк=Jк+Тс (3.27)

 

где Тс – температура окружающей среды;

16) определяется температура нагретой зоны:

Тз=Jз+Тс (3.28)


17) определяется температура поверхности элемента:

Тэл=Jэл+Тс(3.29)

18) находится средняя температура воздуха в блоке:

Тв=Jв+Тс(3.30)

19) рассчитывается температура окружающей среды:

Тэ-с=Jэ-с+Тс (3.31)

 

Расчет конструкции на виброзащищенность

Для того чтобы проверить насколько хорошо защищено проектируемое устройство от механических воздействий, необходимо провести расчет собственной частоты вибраций платы. В данном случае плата является единственной колебательной системой. Жесткость платы зависит от материала, формы, геометрических размеров и способа закрепления.

Печатная плата имеет прямоугольную форму следующих размеров:

axbxh=280 мм x 150 мм x 1.5 мм

При расчете собственной частоты вибрации печатной платы используют следующие допущения:

плата представляется в виде модели распределенными массами и упругими демпфирующими связями;

ЭРЭ на плате располагаются равномерно на ее поверхности;

плата с элементами принимается за тонкую пластину, так как b/h<0,1, толщина платы принимается постоянной, h = const;

материал платы однородный, идеально упругий, изотропный;

возникающие изгибные деформации малы по сравнению с толщиной платы;

при изгибе платы нейтральный слой не подвергается деформации растяжения (сжатия).

Для пластин с четырьмя точками крепления частота собственных колебаний платы, определяется по формуле:

, (3.11)

где a = 0,28 м. длинна платы;

b = 0,15 м. ширина платы;

цилиндрическая жесткость платы, ;

;

 распределенная по площади масса платы и элементов, .

Цилиндрическая жесткость платы определяется по формуле:

(3.12)

где - модуль упругости материала платы;

 - толщина платы;

- коэффициент Пуассона.

 (3.13)

Распределенная по площади масса платы и элементов определяется из выражения:

, (3.14)

где - удельная плотность материала платы;

- масса элементов, установленных на плате, .

, (3.15)

где - масса i - го элемента, установленного на плате, ;

n = 40 - количество элементов, установленных на плате.

Воспользовавшись справочными данными получим
mэ = 104,2´10 –3 кг. следовательно,

Подставляя найденные величины в формулу (4.2.1), определим минимальную частоту собственных колебаний платы. Она будет минимальной при , .

В результате механических воздействий печатная плата подвержена усталостному разрушению, в особенности при возникновении механического резонанса. Чаще всего усталостные отказы проявляются в виде обрыва проводников, разрушения паяных соединений, нарушения контактов в разъемах. Подобные разрушения можно предотвратить, если обеспечить выполнение условия

(3.16)

где - минимальная частота собственных колебаний платы;

- ускорение свободного падения, g = 9,8м/c2;

- безразмерная постоянная, выбираемая в зависимости от частоты собственных колебаний и воздействующих ускорений.

- максимальные вибрационные перегрузки, выраженные в единицах g.

Следовательно,

¦min 85Гц

Значит, проектируемая плата будет иметь достаточную усталостную прочность при гармонических вибрациях.

Определим эффективность виброзащиты по формуле:

 , (3.17)

где - верхняя частота диапазона воздействующих частот, Гц;

- резонансная колебаний печатной платы, Гц.

Подставив значения, получим:

.


Таким образом, можно сказать, что спроектированное устройство на 44% защищено от вибрационных воздействий.


Информация о работе «Разработка конструкции цифрового синтезатора частотно–модулированных сигналов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 111585
Количество таблиц: 12
Количество изображений: 2

Похожие работы

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

Скачать
119959
17
32

... – 3 0,1; 0,2; 0,4; 1; 2; 4 N8974A 0,01 – 6.7 0,1; 0,2; 0,4; 1; 2; 4 N8975A 0,01 – 26.5 0,1; 0,2; 0,4; 1; 2; 4 Таблица 4.3 - Технические особенности ИКШ серии NFА Структурная схема измерителя коэффициента шума N8973A представлена на рисунке 4.4. Рисунок 4.4 - Структурная схема ИКШ N8973A В преобразователе частот (блок радиоприемного тракта) спектр входного сигнала сначала ...

Скачать
448518
14
55

... также невысока и обычно составляет около 100 кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI. Лекция 3. Программное обеспечение ПЭВМ 3.1 Общая характеристика и состав программного обеспечения 3.1.1 Состав и назначение программного обеспечения Процесс взаимодействия человека с компьютером организуется устройством управления в соответствии с той программой, которую пользователь ...

Скачать
103748
0
0

... в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах. Аппаратные средства мультимедиа: ·     Средства звукозаписи; ·     Звуковоспроизведении; ·     Манипуляторы; ·     Средства «виртуальной реальности»; ·     Носители информации (CD-ROM); ·     Средства передачи; ·     Средства записи; ·     Обработки ...

0 комментариев


Наверх