МИНИСТЕРСТВО ОБРАЗОВАНИЕ И НАУКИ УКРАИНЫ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра МАХП

ОТЧЕТ

по учебной практике

 Разработал:________ ст. гр. МХП-09

Аленичев А.В.

 Принял: ________ доц. каф. МАХП Топоров А.А.

Донецк-2009


СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. ХИМИЧЕСКАЯ ИНЖЕНЕРИЯ И ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ 2. КОКСОВЫЕ ПЕЧИ 3. КОМПЬЮТЕРНАЯ СИСТЕМА КАФЕДРЫ МАХП ВЫВОДЫ
ВВЕДЕНИЕ

Одним из важных видов деятельности человека является переработка сырьевых материалов и получение продуктов, которые сопровождаются изменением химического состава веществ. Именно этим и занимается химическая промышленность. Для проведения данных химических реакций необходимо соответствующее оборудование и программное обеспечение. Об этом и пойдет речь в этом документе


 

1.  ХимИЧЕСКАЯ инженерия и химическая промышленность

1.1 ПРЕДМЕТ И ЗАДАЧИ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Технология – наука о производствах, о тех методах и аппаратах посредством которых исходные материалы превращают в предметы потребления или в средства производства. Этот процесс называется технологическим процессом.

Технологии делятся на 2 группы:

1)  Механическая

2)  Химическая

Механическая – изучает процессы, в которых изменяется лишь форма (реже физические свойства) перерабатываемого материала.

Химическая – изучает процессы, связанные с изменением хим. Состава перерабатываемых материалов, а также оборудование необходимого для проведения этих процессов.

Как правило, технологический процесс разделяется на несколько стадий, которые осуществляются в различных аппаратах.

Сочетание этих стадий в определенной последовательности называется технологической схемой производства.

Продукты, получаемые на промежуточных стадиях, называются промежуточными продуктами или полупродуктами или полуфабрикатами. Продукт, получаемый на конечной стадии, называется готовым продуктом.

Наряду с готовым продуктом получаются отходы, т.е. неиспользуемые вещества.

В настоящее время организовывают безотходное производство, где отходы являются сырьем для других производств.

В химической технологии сырьем называют исходные материалы. По своему происхождению сырье делится на 3 группы:

1)  Минеральное

2)  Растительное

3)  Животное

1)  Минеральное – добываемые из земных недр природные минералы.

а)  рудное

б)  нерудное

в)  горючее

а) служит для получения из него металлов;

б) горные породы или минералы, которые служат сырьем для химических производств:

- стройматериалы (гравий, песок, глина);

- индустриальное сырье (те минералы, которые используются практически без переработки: графит, слюда, асбест);

- химическое минеральное сырье (перерабатываемые минералы);

- драгоценное, полудрагоценное, поделочное сырье (мрамор, гранит и т.д.)

в) горючее – ископаемые, которые можно использовать в качестве топлива (нефть, газ, уголь).

Так как сырье, находящееся в земле содержит посторонние примеси, то но подвергается предварительной обработке, после которой оно должно обладать комплексом предъявляемых требований (однородность хим. состава, крупность, влажность). Как правило, предварительная обработка заключается в классификации, измельчении, укрупнении, обезвоживании и обогащении.

Классификация (сортировка) – процесс разделения сырья на отдельные сорта (классы) по определенным признакам: крупности, плотности и т.д.

Измельчение – уменьшение размеров частиц сырья до необходимых.

Укрупнение – увеличение размеров частиц сырья до необходимых (брикетирование, агломерация).

Обезвоживание – удаление излишков воды из сырья.

Обогащение – обработка сырья с целью отделения полезных компонентов от примесей.

Для проведения большинства процессов хим. технологий требуются затраты энергии. Как правило, это тепловая и электрическая энергия.

Тепловая энергия используется для ускорения хим. реакций, а также для таких процессов как сушка, плавление выпаривание и т.д.

Электроэнергия расходуется на приведение в движение машин, а также для таких технологических процессов, как электролиз, гидролиз, электростатическое осаждение и т.д.

Кроме энергии и сырья важно использование воды. В хим. производстве используется большое количество воды. При этом к воде предъявляется комплекс требований по жесткости, хим. составу, наличию примесей и т.д.

  1.2 Виды технологических производств

1)  Переработка углеводородов

К углеводородному сырью относят нефть, газ, уголь.

1.  Нефть – маслянистая жидкость имеющая окраску от желтого до темно-коричневого цвета, легче воды. По элементарному составу нефть состоит из:

~85% C.

~15% H.

~2% O, N, S.

По компонентному составу из большого количества органических соединений (парафины, нафтены, циклоны, антрацены ит.д.)

Напрямую нефть не используется, поэтому ее перерабатывают с получением следующих продуктов: бензин, керосин, реактивное топливо, мазут, соляровое масло, дизельное топливо, смазочные масла, бензол, толуол, ксилол, гудрон, парафины, битум, нефтяной кокс и т.д.

2.  Уголь – твердый минерал, состоящий из:

~80-90% C;

~4-5% H;

~2-9% O;

~2-4% S;

~1-3% примеси.

Порядка 35% добываемого угля используется в качестве топлива, оставшиеся 65% для получения хим. продуктов:

1.  Кокс

2.  Жидкие компоненты

3.  Газообразные продукты.

Кокс – твердый остаток, состоящий из углерода и некоторых минеральных компонентов. Используется в черной металлургии для:

1)  Проведения восстановительной реакции и получения железа из его оксидов.

2)  Как источник тепла.

Газообразные продукты - из них получают сырой бензол (полуфабрикат для растворителей, лекарств и т.д.), аммиак (аммиачные удобрения, нашатырный спирт и т.д.).

Смолы: краски, лаки, битум, нафталин, смазочные вещества и т.д.

4.  Природный газ – на 95-98% состоит из метана CH4. Используется в основном как топливо, а также для синтеза органических веществ (пластики, полимеры).

2) Получение силикатных изделий и материалов

Силикатными материалами или изделиями называется материалы или изделия, состоящие из смесей или сплавов силикатов, полисиликатов и алюмосиликатов. Все силикатные изделия делятся на 3 группы:

1.  Керамические

2.  Стеклянные

3.   Вяжущие

Керамические – вырабатываются преимущественно из разных сортов глины, а также некоторых оксидов. К получаемым изделиям относят кирпич, кафель, фаянс, фарфор, огнеупорные материалы и футеровки, тротуарная и облицовочная плитка и т.д. Для всех керамических изделий является общим процесс их изготовления: из сырья различных марок составляется шихта (смесь), из шихты формируется изделие (в основном прессованием), изделие нагревается, часть компонентов расплавляется, обволакиет остальные компоненты, далее изделие охлаждается. В результате происходит спекание и получение готового изделия.

Стеклянные – получение отличается полным расплавлением шихты с последующим охлаждением и получением стеклообразной массы.

Вяжущие – порошкообразные продукты, которые при смешивании с водой образуют пластическую массу, которая через некоторое время загустевает, теряет текучесть и превращается в твердое тело (искусственный камень). Этот процесс называется схватыванием. Полученный искусственный камень не обладает достаточной механической прочностью, поэтому для получения готового изделия его выдерживают от нескольких дней до нескольких месяцев в определенных условиях, при которых происходит процесс твердения.

3) Минеральные удобрения и ядохимикаты

В сельском хозяйстве при выращивании растений вместе с урожаем из почвы удаляются поглощаемые растениями вещества. Если эти вещества не возобновлять, то происходит истощение почвы и урожайность сильно уменьшается. Для возобновления этих веществ служат удобрения. Растения практически на 99% состоят из 10 элементов: кислород, водород, углерод, азот, сера, фосфор, магний, кальций, калий, железо. Удобрения делятся на прямые и косвенные.

Прямые – для непосредственного питания растений.

Косвенные - для изменения структуры и состава почвы.

Прямые удобрения делятся на:

1.  Органические

2.  Минеральные

3.  Микроудобрения

К основным минеральным удобрениям относят:

1.  Азотные удобрения (основным является аммиачная селитра (нитрат аммония NH4NH3);

2.  Фосфорные удобрения (основным удобрением является суперфосфат Ca(H2PO4)2, кроме того применяют двойной суперфосфат);

3.  Калийные удобрения (KCl).

Ядохимикаты используются для борьбы с сельскохозяйственными вредителями. В зависимости от назначения бывают:

1.  Инсектициды – хим. средства для уничтожения насекомых.

2.  Фунгициды – хим. средства для борьбы с болезнями растений вызываемыми грибками, вирусами, бактериями.

3.  Зооциды – хим. средства для борьбы с животными, в основном грызунами.

4.  Гербициды - хим. средства для борьбы с сорняками.

4) Основной (тяжелый) органический синтез

Органический синтез первоначально возник как промышленность получения красителей. В настоящее время используется для получения лекарств, вкусовых пищевых добавок, синтетических моющих средств, спиртов и получения полимеров. Тяжелым называется, так как необходимо получение указанных продуктов в больших количествах.

В настоящее время производство полимеров выделено в отдельную отрасль.

Для проведения тяжелого органического синтеза, а так же получения удобрений и ядохимикатов требуются промежуточные и вспомогательные вещества, производство которых выделено в отдельную отрасль хим. промышленности:

1.  Получение серы и серной кислоты

2.  Производство азотной кислоты и аммиака

3.  Получение хлора и соляной кислоты

5) Производство специальных материалов (взрывчатые вещества и пороха)

6) Наноматериалы и нанотехнологии

Все вышеперечисленные технологии химических производств на практике могут быть реализованы только в конкретном оборудовании. Поэтому основной задачей специалистов в области химической инженерии (механик хим. производств) является работа с таким оборудованием.

Особенности работы оборудования химических производств

1.  Работа с повышенными (пониженными) температурами. Пониженные – от криотемператур(-273о) до ~3000оС.

2.  Работа с повышенными (пониженными) давлениями. От 0 Па (вакуум) (1атм~101,3 кПа.) до ~1000 МПа.

3.  Работа с веществами находящимися в газообразном, жидком, твердом и дисперсном состоянии.

4.  Фазовые превращения рабочих веществ.

5.  Работа с энергонасыщенными веществами (пожаро -, взрывоопасные вещества).

6.  Работа с токсичными веществами.

7.  Крупнотонажность химических производств.

Оборудование

В химических технологиях исходное сырье превращается в конечный продукт в результате хим. превращений, сопровождающихся не только химическими реакциями, но и изменениями физико-химических свойств сырья, изменением структуры и агрегатного состояния веществ, а также физическими, тепловыми, гидравлическими и т.п. процессы. Все это в комплексе составляет химико-технологический процесс.

В химической технологии процессы классифицируют в соответствии с законами, лежащими в их основе:

1.  Гидромеханические процессы – процессы, протекающие в жидкостях, но сопровождающиеся движением перемешивания, разделения, перемещения, фильтрования и т.д.

2.  Тепловые процессы – процессы, сопровождающиеся отводом (подводом) тепла. А значит это нагрев, охлаждение, испарение, конденсация и т.д.

3.  Массообменные процессы – процессы обмена веществом между разными компонентами. Поглощение, экстракция, растворение, адсорбция (твердое вещество поглощает из жидкости), абсорбция (поглощение жидкостью из жидкости или газа), кристаллизация.

4.  Механические процессы – процессы сопровождающиеся переработкой твердых веществ (сыпучих) (щебень, гравий). Транспортирование, смешение, разделение, дробление, прессование и т.д.

5.  Химические процессы – процессы, сопровождающиеся химическими реакциями.

Реализация вышеперечисленных процессов возможна только в соответствующем оборудовании.

Все оборудование хим. производств можно разделить на 3 класса:

1.  Аппараты

2.  Машины

3.  Транспортирующие средства.

Аппарат – техническое устройство или приспособление, предназначенное для проведения химико-технологических процессов.

Машины – устройство, выполняющее механические с целью преобразования вещества, энергии или информации.

Транспортирующие средства – оборудование (чаще всего машины), предназначенное для перемещения вещества по территории предприятия.

В зависимости от назначения оборудование хим. производств делят на:

1.  Универсальное.

2.  Специализированное.

3.  Специальное.

Универсальное – оборудование, которое может использоваться без изменений в различных химических производствах (насосы, компрессоры, вентиляторы, центрифуги, сушилки, калориферы и т.д.).

Специализированное – оборудование, предназначенное для проведения одного процесса в разных модификациях (теплообменник, ректификационная колонна, холодильники, абсорберы и т.д.).

Специальное – оборудование, предназначенное для проведения только одного процесса (дробилка, пресс, сепаратор, сушилка, реактор и т.д.).

Все технологическое оборудование делят на основное и вспомогательное.

Основное – то оборудование, в котором получается промежуточный или целевой продукт.

Вспомогательное – оборудование, предназначенное для промежуточных, дополнительных операций (хранилища, резервуары, емкости, трубопроводы, трубопроводная арматура).

Для инженера работа с оборудованием заключается:

1.  Проектирование – создание достаточного количества информации об оборудовании. Предполагает создание графической информации (чертежи, 3D-модели), и выполнение расчетов.

2.  Изготовление, сборка, монтаж.

3.  Эксплуатация.

4.  Ремонт оборудования.

5.  Материаловедение и правильный выбор материалов.

6.  Выбор и использование электрооборудования.

7.  Обеспечение безопасности оборудования, как при проектировании, так и при эксплуатации.

8.  Обеспечение надежности оборудования.

Вся вышеперечисленная работа с оборудованием в современных условиях предполагает правильное применение компьютерной техники.


2. коксовые печи

 

2.1 Устройство коксовой печи

Коксовая печь - технологический агрегат, в котором осуществляется коксование каменного угля. Первые коксовые печи (так называемые стойловые) стали применять в начале 19 в. Они состояли из кирпичных стенок высотой до 1,5 м и длиной до 15 м, расположенных друг от друга на расстоянии 2—2,5 м. Загруженный в пространство между стенками уголь покрывали сверху и с торцов землёй и поджигали. Коксование продолжалось 8—10 дней. В 30-х гг. 19 в. появились ульевые печи, в которых коксование протекало в закрытых куполообразных камерах с небольшим доступом воздуха. В середине 19 в. получили распространение пламенные коксовые печи с внешним обогревом. Угольную шихту загружали в выложенные из огнеупорного кирпича камеры, разделённые обогревательными простенками с вертикальными каналами, в которых сжигался коксовый газ. Важным этапом явилось создание в 70-х гг. 19 в. коксовые печи с улавливанием химических продуктов из коксового газа. В этих печах камеры коксования были отделены от отопительных простенков. Современные коксовые печи по способу загрузки угольной шихты и выдачи кокса подразделяют на горизонтальные и вертикальные. Наиболее широко распространены горизонтальные коксовые печи периодического действия. Такие коксовые печи состоят из камеры коксования, обогревательных простенков, расположенных по обе стороны камеры, регенераторов. На верху камеры коксования предусмотрены загрузочные люки, с торцов камера закрыта съёмными дверями. Длина камер достигает 13—16 м, высота 4—7 м, ширина 0,4—0,5 м. Обогрев камер осуществляется за счёт сжигания в вертикальных каналах простенков коксового, доменного или др. горючего газа. Период коксования одной угольной загрузки зависит от ширины камеры и температуры в обогревательных каналах и составляет обычно 13—18 ч. По окончании коксования раскалённый кокс выталкивают из камеры через дверные проёмы коксовыталкивателем и тушат. Для компактности коксового цеха и лучшего использования тепла коксовые печи объединяют в батареи (по 61—77 коксовых печей в каждой) с общими для всех печей системами подвода отопительного газа, подачи угля, отвода коксового газа. Все операции по обслуживанию коксовые печи (загрузка, съём и закрытие дверей и люков, выдача и тушение кокса и т.д.) механизированы и автоматизированы. Разрабатываются коксовые печи непрерывного действия, например вертикального и кольцевого типа. [1]

Описание: E:\Документы - Levis\Практика 2010\7246_003.jpg


Информация о работе «Технологии в химической промышленности»
Раздел: Промышленность, производство
Количество знаков с пробелами: 26480
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
54282
0
4

... организовал скупку леса за наличный расчет. А химическая промышленность Китая сдерживается узостью сырьевой базы, поэтому страна импортирует некоторые виды химического сырья. 3. Сравнительная характеристика лесной и химической промышленности Германии и Китая 3.1  Особенности и перспективы развития лесной отрасли в изучаемых странах В Германии автоматизация лесоперерабатывающих предприятий ...

Скачать
6343
0
0

... химической промышленности, возможности предупреждения его поломок с целью своевременного проведения плановых ремонтов на основе предоставляемых информационных и программных средств автоматизации химической промышленности. Предприятия химической промышленности широко применяют различные технологические схемы, главным образом использующие химические методы, в основе которых лежат глубокие ...

Скачать
55403
11
0

... химического комплекса. Предполагается привлечение зарубежных инвесторов во вновь создаваемые структуры с непременным комплексным решением вопросов по охране среды.   2.Отраслевой состав химической промышленности. Химическая промышленность объединяет множество специализированных отраслей, разнородных по сырью и назначению выпускаемой продукции, но сходных по технологии производства ...

Скачать
58306
0
0

... перекрестному владению акциями вместо слияний или поглощений. По три сделки зарегистрировано в Индии, Китае и Южной Корее и две — в Таиланде. 2. Анализ развития химической промышленности в развитых странах и России 2.1 Анализ развития химической промышленности в Германии Германии по объему производства занимает третье место в мире после США и Японии. Основными продуктами ее производства ...

0 комментариев


Наверх