3. Лицензирование в области средств измерений.

Лицензия — документ (соглашение), дающий право на выполнение некоторых действий.

Лицензирование — процесс выдачи специального разрешения (лицензии).

Лицензиар — одна из сторон лицензионного соглашения, предоставляющая другой стороне - лицензиату право на использование объекта лицензии (изобретения, технологии, технического опыта и прочих форм промышленной собственности).

Лицензиат — юридическое лицо или индивидуальный предприниматель, имеющие лицензию на осуществление конкретного вида деятельности.

Лицензионные условия — условия, при соблюдении которых лицензия действительна.

Лицензирование деятельности по изготовлению, ремонту, продаже и прокату СИ, применяемых в сферах распространения государственного метрологического контроля и надзора, порядок лицензирования установлен правилами по метрологии ПР 50.2.005-94 ГСИ. Порядок лицензирования деятельности по изготовлению, ремонту, продаже и прокату средств измерений.

Основанием для выдачи лицензии является:

1.  заявление юридического или физического лица;

2.  положительные результаты проверки органом ГМС условий осуществления лицензируемого вида деятельности на их соответствие нормативных документов по обеспечению единства измерений.

Юридическое или физическое лицо, изъявившее желание осуществлять один или несколько видов лицензируемой деятельности, подает заявление по установленной форме в орган ГМС по месту расположения Заявителя.

Орган ГМС регистрирует заявление и направляет заявителю проект договора на проведение работ по лицензированию (в 2-х экз.). Заявитель подписывает договор и возвращает один экземпляр в орган ГМС.

Орган ГМС проводит лицензирование не позднее 30 дней со дня получения договора.

В случае обнаружения недостатков в организации лицензируемой деятельности, препятствующих выдаче лицензии, орган ГМС формулирует в акте проверки мотивированный отказ.

В выдаче лицензии заявителю может быть отказано, если:

1.   в представленных сведениях содержатся недостоверные сведения;

2.   условия осуществления лицензируемой деятельности не соответствуют требованиям нормативных документов ГСИ;

3.   не истек установленный срок после лишения Заявителя предыдущей лицензии;

4.   систематически не выполняются заявителем условия осуществления лицензируемой деятельности.

Контроль над соблюдением условий осуществления лицензируемой деятельности проводит орган ГМС, выдавший лицензию. Порядок контроля устанавливается органом ГМС.

Вопросы и задания.

34.  Что такое поверка СИ?

35.  Какие виды поверки существуют?

36.  Кому может быть предоставлено право проведения поверки СИ?

37.  Что такое лицензия? Как называется процесс ее выдачи?

38.  Что является основанием для выдачи лицензии?

39.  Как проходит оформление лицензии?

40.  При каких условиях может быть отказано в выдаче лицензии?


 

§11. Калибровка средств измерений. Российская система калибровки

 

1. Калибровка средств измерений — это совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и/или пригодности к применению средств измерений, не подлежащих государственному метрологическому контролю и надзору. Под пригодностью средства измерения подразумевается соответствие его метрологических характеристик ранее установленным техническим требованиям, которые могут содержаться в нормативном документе или определяться заказчиком. Вывод о пригодности делает калибровочная лаборатория.

Калибровка заменила ранее существовавшую в нашей стране ведомственную поверку и метрологическую аттестацию средств измерений. В отличие от поверки, которую осуществляют органы государственной метрологической службы, калибровка может проводиться любой метрологической службой (или физическим лицом) при наличии надлежащих условий для квалифицированного выполнения этой работы. Калибровка — добровольная операция и ее может выполнить также и метрологическая служба самого предприятия. Это еще одно отличие от поверки, которая, как уже сказано выше, обязательна и подвергается контролю со стороны органов ГМС.

Добровольный характер калибровки не освобождает метрологическую службу предприятия от необходимости соблюдать определенные требования. Главное из них — прослеживаемость, т.е. обязательная "привязка" рабочего средства измерений к национальному (государственному) эталону. Таким образом, функцию калибровки следует рассматривать как составную часть национальной системы обеспечения единства измерений.

Внедрение калибровки в России имеет свои особенности. В Западных странах калибровочные работы расширялись и развивались, вырастая из потребностей повышения конкурентоспособности продукции, и при этом поверке (как обязательной функции) подлежала довольно ограниченная номенклатура средств измерений. В России же калибровка является продуктом разгосударствления процессов контроля за исправностью приборов.

Возможны следующие варианты организации калибровочных работ:

• предприятие самостоятельно организует у себя проведение калибровочных работ и не аккредитуется ни в какой системе;

• предприятие, заинтересованное в повышении конкурентоспособности продукции, аккредитуется в Российской системе калибровки (РСК) на право проведения калибровочных работ от имени аккредитовавшей его организации;

• предприятие аккредитуется в РСК с целью выполнения калибровочных работ на коммерческой основе;

• предприятия, аккредитовавшиеся на право поверки средств измерений, одновременно получают аттестат аккредитации на право проведения калибровочных работ по тем же видам (областям) измерений;

• метрологические институты и органы Государственной метрологической службы регистрируются в РСК одновременно как органы аккредитации и как калибровочные организации;

• аккредитация предприятия в качестве калибровочной лаборатории в зарубежной калибровочной службе открытого типа.

2. Субъектами РСК являются:

• метрологические службы юридических лиц, аккредитованные на право калибровки средств измерений с использованием эталонов, подчиненных государственным эталонам единиц величин;

• государственные научные метрологические центры (метрологические институты Госстандарта России) и органы Государственной метрологической службы, зарегистрированные в РСК как аккредитующие органы, имеющие право аккредитовывать метрологические службы юридических лиц на право калибровки средств измерений;

• Госстандарт России, являющийся центральным органом РСК, координирующим деятельность субъектов РСК;

• ВНИИ метрологической службы, осуществляющий функции по организационному, методическому и информационному обеспечению деятельности РСК;

• совещательный орган РСК — Совет РСК, образованный Госстандартом России для формирования и обсуждения проектов решений центрального органа РСК по вопросам технической политики деятельности РСК.

В организационную структуру Российской системы калибровки (РСК) входят: Центральный орган Российской системы калибровки (РСК) (Управление метрологии Госстандарта России), Совет Российской системы калибровки (РСК), Научно-методический центр Российской системы калибровки (РСК) (ВНИИметрологическая служба), аккредитующие органы Российской системы калибровки (РСК), метрологические службы юридических лиц, аккредитованные на право проведения калибровочных работ.

В качестве аккредитующих органов Российской системы калибровки (РСК) регистрируются ГНМЦ и органы ГМС по их заявкам.

Совет Российской системы калибровки (РСК) формируется из числа руководителей метрологических служб государственных органов управления, руководителей аккредитующих органов, руководителей аккредитованных метрологических служб юридических лиц, представителей отраслей и предприятий, научно-исследовательских институтов и объединений, ГНМЦ, органов ГМС, а также других заинтересованных в Российской системы калибровки (РСК) обществ и объединений. Председатель Совета Российской системы калибровки (РСК) избирается на 3 года членами Совета открытым голосованием на общем собрании. Совет собирается по инициативе Центрального органа Российской системы калибровки (РСК) не реже одного раза в год или по инициативе 1/3 ее состава для разрешения срочных вопросов, касающихся деятельности Российской системы калибровки (РСК).

 

Центральный орган Российской системы калибровки (РСК), координирующий деятельность Российской системы калибровки (РСК), осуществляет следующие функции:

1.  устанавливает основные принципы, правила Российской системы калибровки (РСК);

2.  принимает решения о регистрации аккредитующих органов;

3.  осуществляет контроль за деятельностью аккредитующих органов;

4.  рассматривает апелляции по результатам аккредитации;

5.  взаимодействует с калибровочными службами других стран и с международными калибровочными союзами, принимает решения о присоединении к международным калибровочным союзам и соглашениям по калибровке;

6.  организовывает ведение Реестра Российской системы калибровки (РСК).

Совет Российской системы калибровки (РСК) осуществляет следующие функции:

1.  формирует предложения по основным принципам и правилам функционирования Российской системы калибровки (РСК);

2.  разрабатывает рекомендации по совершенствованию деятельности Российской системы калибровки (РСК);

3.  рассматривает проекты законодательных и нормативных актов в области калибровки, готовит предложения об утверждении или внесении изменений и дополнений в нормативные документы, регламентирующие деятельность Российской системы калибровки (РСК);

4.  определяет основные направления в проведении исследований в области калибровки;

5.  рассматривает и определяет направления международного сотрудничества в области калибровки;

6.  рассматривает экономические и финансовые аспекты в работе Российской системы калибровки (РСК).

К основным функциям научно-методического центра Российской системы калибровки (РСК) относятся:

1.  регистрация и ведение Реестра Российской системы калибровки (РСК);

2.  участие в работе комиссий по регистрации аккредитующих органов Российской системы калибровки (РСК);

3.  подготовка и представление в Центральный орган Российской системы калибровки (РСК) материалов по регистрации аккредитующих органов Российской системы калибровки (РСК);

4.  организация и координация разработки, метрологической экспертизы и аттестации методик калибровки СИ;

5.  участие в проведении проверок выполнения требований, предъявляемым к аккредитующим органам и метрологическим службам, аккредитованным на право проведения калибровочных работ;

6.  создание банка данных и банка нормативных документов по калибровочной деятельности, издание информационных материалов о деятельности Российской системы калибровки (РСК), справочников об аккредитованных метрологических службах;

7.  пропаганда и распространение научно-технических знаний в области метрологии, организация обмена опытом специалистов-метрологов, занимающихся калибровочной деятельностью;

8.  осуществление консультационной деятельности по вопросам Российской системы калибровки (РСК);

9.  установление контактов с национальными и международными калибровочными службами и союзами (объединениями);

10.  проведение мероприятий по подготовке и повышению квалификации кадров в области калибровочной деятельности;

11.  осуществление сбора и анализа информации о калибровочной деятельности в стране и за рубежом;

12.  разработка предложений по дальнейшему развитию и совершенствованию Российской системы калибровки (РСК).

К основным функциям аккредитующего органа Российской системы калибровки (РСК) относятся:

1.  аккредитация метрологических служб в соответствии со своей специализацией и осуществление инспекционного контроля за соблюдением требований к выполнению калибровочных работ;

2.  обеспечение передачи размеров единиц аккредитованным метрологическим службам от государственных эталонов;

3.  разработка, формирование (комплектация) и актуализация фонда нормативных документов по калибровочной деятельности данной специализации;

4.  оформление и выдача аттестатов аккредитации метрологической службы на право калибровки СИ, представление материалов для внесения в Реестр Российской системы калибровки (РСК) аккредитованных метрологических служб;

5.  принятие решения о признании зарубежных сертификатов о калибровке или калибровочных знаков и доведение принятых решений до сведения заинтересованных юридических лиц;

6.  отмена или приостановление действия выданных от имени данного аккредитующего органа сертификатов о калибровке СИ;

7.  ведение перечня аккредитованных метрологических служб и подготовка для опубликования информации по результатам аккредитации;

8.  организация повышения квалификации и аттестации персонала;

9.  проведение метрологической экспертизы нормативных документов по калибровке СИ;

10.  проведение калибровки СИ, оформление результатов калибровки.

К основным функциям аккредитованных метрологических служб относятся:

1.  калибровка СИ, в том числе для сторонних организаций;

2.  обеспечение надлежащего состояния калибровочного оборудования и помещений;

3.  подготовка и переподготовка кадров;

4.  разработка методик калибровки СИ;

5.  соблюдение требований и правил, установленных нормативными документами в области калибровочной деятельности.

Вопросы и задания.

41.  Что такое калибровка СИ?

42.  Что понимают под пригодностью средства измерения?

43.  Чем отличается калибровка от поверки?

44.  Назовите возможные варианты организации калибровочных работ.

45.  Назовите субъекты РСК.

 

§12. Метрологическая аттестация средств измерений

 

1. Метрологическая аттестация – это комплекс мероприятий по исследованию метрологических характеристик и свойств средства измерения с целью принятия решения о пригодности его применения в качестве образцового. Обычно для метрологической аттестации составляют специальную программу работ, основными этапами которых являются: экспериментальное определение метрологических характеристик; анализ причин отказов; установление межповерочного интервала и др. Метрологическую аттестацию средств измерений, применяемых в качестве образцовых, производят перед вводом в эксплуатацию, после ремонта и при необходимости изменения разряда образцового средства измерений. Результаты метрологической аттестации оформляют соответствующими документами (протоколами, свидетельствами, извещениями о непригодности средства измерений).

Главным нормативным документом в области метрологической аттестации средств измерений является ГОСТ 8.326-89 ГСИ. Метрологическая аттестация средств измерений. Стандарт был введен 1.01.1991 года.

В соответствии с этим стандартом, основными задачами метрологической аттестации являются:

·  определение и установление соответствия метрологических характеристик средств измерений требованиям распространяющихся на них документов с указанием полученных данных в свидетельстве;

·  установление перечня метрологических характеристик средств измерений, подлежащих контролю при поверке;

·  опробование методики поверки.

Работы по метрологической аттестации средств измерений и оплату за ее проведение осуществляют на основе хозяйственных договоров между заинтересованными сторонами или гарантийных писем, в которых устанавливаются сроки выполнения работ и другие условия. Метрологическую экспертизу технических заданий и технической документации, представляемых на метрологическую аттестацию, проводят в соответствии с МИ 1314.

Головной организацией, осуществляющей общее научно-методическое руководство работами по метрологической аттестации средств измерений, а также осуществляющей регистрацию типовых программ метрологической аттестации (ТПМА), является Научно-исследовательский институт метрологической службы (НИИМС).

Типовая программа и методика метрологической аттестации средств измерений (ТПМА) - методический документ, устанавливающий последовательность, объем и методику метрологической аттестации средств измерений, характеризующихся общностью функционального назначения, методов и средств аттестации.

2. Метрологическую аттестацию средств измерений осуществляют:

·  государственная метрологическая служба;

·  ведомственные метрологические службы (головные и базовые организации метрологической службы министерств и ведомств, метрологические службы предприятий и организаций, в том числе кооперативных), а также головные организации по государственным испытаниям средств измерений министерств (ведомств) в соответствии с положениями об этих службах.

Порядок проведения метрологической аттестации (комиссия, структурные подразделения и др.) устанавливают при заключения договора.

Средства измерений, применяемые при метрологической аттестации, должны иметь действующие свидетельства о метрологической аттестации или клейма, подтверждающие их поверку. Результаты исследований, выполняемых при определении каждой метрологической характеристики, заносят в протокол, подписываемый исполнителем, по утвержденной форме. В качестве протокола допускается использование распечаток, получаемых машинным способом, которые должны быть подписаны теми же лицами.

Результаты метрологической аттестации средств измерений, проведенной в процессе ведомственных (межведомственных) приемочных и приемосдаточных испытаний, а также в процессе аттестации испытательного оборудования, отражают в акте (протоколе) испытаний (аттестации), на основании которых оформляют свидетельство о метрологической аттестации средств измерений.

При отрицательных результатах метрологической аттестации оформляют протокол с указанием полученных результатов и (или) извещение о непригодности средства измерений к применению с соответствующим обоснованием.

Вопросы и задания.

46.  Что такое метрологическая аттестация?

47.  Назовите основные задачи метрологической аттестации.

48.  Что такое типовая программа и методика метрологической аттестации средств измерений?

49.  Какие организации осуществляют метрологическую аттестацию?


 

§13. Система сертификации средств измерений

 

1. Сертификация — процедура подтверждения соответствия, посредством которой независимая от изготовителя (продавца, исполнителя) и потребителя (покупателя) организация удостоверяет в письменной форме, что продукция соответствует установленным требованиям.

В соответствии с Законом РФ "О сертификации продукции и услуг" в России создана Система сертификации средств измерений, которая носит добровольный характер и удостоверяет соответствие измерительных средств заявителей метрологическим правилам и нормам. При организации Системы принимались во внимание и в большой степени учитывались нормативные документы международных организаций ИСО, Системы сертификации ГОСТ Ρ и Системы сертификатов МОЗМ.

2. Организационно в Систему входят: Управление метрологии Госстандарта РФ — Центральный орган системы, Координационный Совет, Апелляционный комитет, Научно-методический центр — Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС), органы по сертификации, испытательные лаборатории (центры) средств измерений.

Основные функции Центрального органа Системы:

• организация, координация и методическое руководство работами по сертификации в Системе;

• установление основных принципов и правил сертификации в Системе;

• определение номенклатуры средств измерений, подлежащих сертификации;

• аккредитация органов по сертификации и испытательных лабораторий (центров);

• выполнение функций органа по сертификации при его отсутствии;

• организация инспекционного контроля за деятельностью аккредитованных органов по сертификации и испытательных лабораторий (центров);

• взаимодействие с международными и зарубежными организациями по вопросам сертификации;

• признание документов об аккредитации органов по сертификации.

При Центральном органе функционирует научно-методический центр Системы, основные функции которого:

• разработка принципов, правил и структуры Системы;

• организация работ по аккредитации органов по сертификации и испытательных лабораторий (центров);

• регистрация сертифицированных средств измерений, органов по сертификации, испытательных лабораторий (центров) и нормативных документов;

• ведение Реестра Системы;

• формирование банка данных и информационное обеспечение Системы

3. Основные цели Системы:

• обеспечение единства измерений;

• содействие экспорту и повышение конкурентоспособности средств измерений.

Основные задачи Системы:

• проверка и подтверждение соответствия средств измерений установленным в распространяющихся на них нормативных документах метрологическим нормам и требованиям;

• проверка обеспеченности сертифицируемых средств измерений методами и средствами калибровки для передачи размеров от утвержденных Госстандартом России эталонов;

• проверка соответствия средств измерений дополнительным требованиям, указанным заявителем.

Сертификацию средств измерений осуществляют аккредитованные органы по сертификации средств измерений с учетом результатов испытаний, проведенных аккредитованными на техническую компетентность и независимость испытательными лабораториями (центрами).

Сертификат соответствия выдает заявителю Центральный орган Системы или орган по сертификации на основе лицензионного соглашения с Центральным органом; они устанавливают и срок действия сертификата. Центральный орган Системы организует инспекционный контроль за работой аккредитованных органов по сертификации.

Сертификация должна обеспечить соответствие средств измерения стандартам и другим национальным документам, устанавливающим обязательные требования согласно российскому законодательству:

m  безопасность и экологическую чистоту;

m  функциональные свойства;

m  уверенность в объективности и компетентности сертификации.

Вопросы и задания.

50.  Что такое сертификация?

51.  Какие организации входят в систему сертификации?

52.  Назовите цели и задачи системы сертификации.

53.  Какая организация выдает сертификат соответствия?

54.  Какие требования устанавливает российское законодательство к сертификации?

 

§14. Методики выполнения измерений

 

1. Методика выполнения измерений (МВИ) – совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с известной точностью.

Методики разрабатывают и используют для выполнения измерений с погрешностью, характеристики которой не хуже гарантированной в научно-технической документации на МВИ.

Повышение результатов измерений с известной погрешностью или с погрешностью, не превышающей допустимых пределов, является одним из важнейших условий обеспечения единства измерений. С этой целью разрабатываются МВИ.

Под МВИ понимают технологический процесс измерения, поэтому не следует смешивать понятия МВИ и документ на МВИ.

Не все МВИ могут быть описаны или регламентированы документом на МВИ. Например, такие простейшие измерения, как измерения давления с помощью показывающих манометров, электрических величин щитовыми приборами, линейно-угловые измерения, измерения массы и многих других величин с помощью простых средств измерений, не требуют документированных МВИ. Необходимость документации МВИ устанавливает разработчик конструкторской, технологической или проектной документации.

По способам учета свойств СИ, по средствам которых реализуется МВИ, различают:

1. типовые МВИ, гарантированные характеристики погрешностей, которые определены с учетом возможности применений любого экземпляра СИ и вспомогательных технических устройств.
2. индивидуальные МВИ, гарантированные характеристики погрешностей которых определены с учетом индивидуальных вспомогательных устройств.

2. Разработка, согласование и утверждение ТЗ на разработку МВИ осуществляются в случаях, когда предполагается регламентировать МВИ в отдельном документе. Типичные требования, указываемые в ТЗ на МВИ, приведены в ГОСТ Р 8.563-96.

В дополнение к информации, приведенной в ТЗ, в числе исходных данных могут потребоваться следующие сведения:

1.  о наличии СИ, в том числе утвержденных типов;

2.  о наличии других технических средств, в том числе средств вычислительной техники, которые могут быть использованы при измерениях;

3.  о наличии эталонов, стандартных образцов состава и свойств веществ и материалов, аттестованных смесей для поверки (калибровки) СИ, которые могут быть использованы в МВИ;

4.  о квалификации операторов, выполняющих измерения;

5.  другие данные в соответствии со спецификой МВИ.

В большинстве случаев выбор метода и СИ представляет собой многовариантную задачу. Ее рациональное решение соответствует минимальным затратам на измерения, включая затраты на метрологическое обслуживание СИ, при условии выполнения заданных требований к МВИ, в том числе требований к точности измерений.

Если оцененные характеристики точности измерений не превышают допускаемых пределов и незначительно меньше этих пределов, то точность измерений считают удовлетворительной и ее характеристики приписывают данной МВИ.

Положения, изложенные в документе на МВИ, должны обеспечивать при их соблюдении выполнение требований к точности измерений и другим регламентированным характеристикам МВИ.

Проекты государственных стандартов, в которых излагаются МВИ, предназначенные для применения в сферах распространения ГМКН, должны подвергаться метрологической экспертизе в ГНМЦ. Данную экспертизу не проводят, если ГНМЦ ранее аттестовал стандартизуемую МВИ.

3. Аттестация МВИ - процедура установления и подтверждения соответствия МВИ предъявляемым к ней метрологическим требованиям.

Аттестации подвергают в обязательном порядке МВИ, используемые в сферах распространения ГМКН.

Аттестацию методик выполнения измерений МВИ, применяемых вне сфер распространения ГМКН, проводят в порядке, установленном в министерстве (ведомстве) или на предприятии (в организации). Аттестацию этих МВИ могут проводить МС предприятий (организаций), разрабатывающих или применяющих МВИ. Если МС выполняет аттестацию МВИ, применяемой на других предприятиях, то эта МС должна быть аккредитована на право аттестации МВИ.

Аттестацию методик выполнения измерений МВИ осуществляют путем метрологической экспертизы документации, теоретических или экспериментальных исследований МВИ.

Вопросы и задания.

55.  Что такое методика выполнения измерений?

56.  С какой целью разрабатываются МВИ?

57.  Какие МВИ различают по способам учета свойств СИ?

58.  Что такое аттестация МВИ?

 

§15. Метрологическая экспертиза

 

1. Метрологическая экспертиза конструкторской и технологической документации - это анализ и оценка технических решений, по выбору параметров, подлежащих измерению, установлению норм точности и обеспечению методами и СИ процессов разработки, изготовления, испытания, эксплуатации и ремонта изделия.

Проведение экспертизы должно быть направлено на:

1. внедрение в производство наиболее современных и прогрессивных методов и средств контроля, обеспеченных технически обоснованную точность, снижение трудоемкости и себестоимости контрольных операций.

2. соответствия применяемых во всех подразделениях предприятия средств и методов измерения, требование оптимальных режимов технологического процесса и контроля качества продукции.

Основной целью метрологической экспертизы является анализ и оценка технических решений по выбору параметров, подлежащих измерению, установлению норм точности и обеспечению методами и средствами измерений технологического процесса изготовления продукции, подлежащей выпуску.

В задачи метрологической экспертизы технической документации входят:

·  установление правильности метрологических терминов и наименования физических величин и их единиц;

·  определение номенклатуры контролируемых (измеряемых) параметров;

·  оценка правильности выбора средств и методов измерений заданному уровню точности и др.

2. Экспертиза документации проводится для обеспечения контроля и соблюдения требований нормативной документации к составу, построению, изложению материала анализируемого документа, позволяет повысить уровень унификации процедур и использования типовых решений, а также позволяет обеспечить проведение работ по документации в минимальные сроки, при минимальных затратах и обеспечение качества выпускаемой продукции (услуг).

Метрологическую экспертизу проводит эксперт на основании перечня технических документов, подлежащих экспертизе и утвержденных руководителем предприятия-разработчика технической документации. Экспертиза проводится по мере разработки технических документов. Эксперт должен располагать необходимой информацией и знаниями в области проведения этого контроля. Метрологическую экспертизу документации, зачастую, проводят целые подразделения метрологической службы организации-разработчика.

Результаты метрологической экспертизы документации должны оформляться экспертным заключением, которое утверждается руководителем организации, проводившей экспертизу.

В случае несоответствия результатов метрологической экспертизы документации установленным требованиям эксперт оформляет экспертное заключение, куда вносятся все замечания и предложения о необходимости внесения изменений в документацию.

Проведение метрологической экспертизы направлено:

− на внедрение в производство наиболее современных методов и средств контроля, обеспечивающих заданную точность, снижение трудоемкости и себестоимости контрольно-измерительных операций;
− на соответствие применяемых во всех подразделениях предприятия методов и средств измерений требованиям обеспечения оптимальных режимов технологических процессов и контроля качества продукции.

Метрологическая экспертиза конструкторской и технологической документации осуществляется в соответствии с положениями стандартов Государственной системы обеспечения единства измерений (ГСИ), Единой системы конструкторской документации (ЕСКД), Единой системы технологической документации (ЕСТД), Единой системы технологической подготовки производства (ЕСТПП) и других стандартов, устанавливающих метрологические правила, нормы и положения.

Вопросы и задания.

59.  Что такое метрологическая экспертиза конструкторской и технологической документации?

60.  На что должно быть направлено проведение экспертизы?

61.  Назовите основные цели и задачи экспертизы.

62.  Как проводится метрологическая экспертиза?

 

§16. Анализ состояния измерений

 

1. Цели и задачи, методика и порядок проведения работ по анализу состояния измерений, контроля и испытаний определены рекомендацией МИ 2240-98 "ГСИ. Анализ состояния измерений, контроля и испытаний на предприятии, в организации, объединении. Методика и порядок проведения работ".

Анализ состояния измерений, контроля и испытаний на предприятии, проводится в целях установления соответствия достигнутого уровня метрологического обеспечения (МО) современным требованиям производства и разработки на этой основе предложений по планированию его дальнейшего развития, создания или внедрения методов и средств измерений, испытаний, контроля, необходимых для интенсификации производства, создания и внедрения новых видов техники и технологии, улучшения качества продукции, повышения достоверности результатов измерений при контроле условий труда, рационального использования материальных, энергетических и трудовых ресурсов, при испытаниях продукции и услуг для целей сертификации.

Анализ состояния измерений, контроля и испытаний в проектно-конструкторских организациях проводится с целью установления соответствия состояния МО требованиям, возникающим при разработке и освоении новых изделий и технологических процессов.

2. Объектами анализа состояния измерений могут стать:

·  планы разработки новых изделий или процессов;

·  технические задания на новые изделия или процессы;

·  общее состояние средств измерений;

·  МВИ;

·  укомплектованность квалифицированными кадрами для проведения измерений;

·  возможности создания на базе организации центров коллективного пользования уникальными и остродефицитными средствами измерений.

На основе обобщения материалов анализа состояния измерений, контроля и испытаний в проектно-конструкторской организации должны быть подготовлены предложения по улучшению МО производства и меры по их реализации.

Важным звеном оценки состояния измерений является анализ деятельности МС предприятия. При его проведении устанавливаются наличие лицензии на изготовление и ремонт СИ, наличие положения о МС, укомплектованность кадрами и т.д.

Анализ состояния измерений проводится либо добровольно (с периодичностью 1—2 года), либо в обязательном порядке (при аттестации производства, сертификации систем менеджмента качества, аккредитации испытательных и метрологических лабораторий).

3. Результаты работ оформляют актом, который доводится до сведения руководителя лабораторий и представляется в организацию, ответственную за проведение оценки состояния измерений. В зависимости от выявленного состояния измерений в акте делают вывод о соответствии достигнутого уровня МО измерений современным требованиям или о наличии (отсутствии) условий для выполнения измерений в закрепленной области деятельности.

Грубейшими нарушениями, которые могут быть выявлены в процессе анализа могут быть:

·  несоответствие используемой методики контролируемому объекту;

·  нарушение правил аттестации МВИ;

·  неправомерность использования СИ, МВИ и методов испытаний или стандартных образцов;

·  систематическое получение результатов испытаний и измерений с нарушением требований методик;

·  отсутствие необходимых СИ, испытательного оборудования, реактивов, материалов, стандартных образцов или их несоответствие установленным требованиям;

·  неукомплектованность кадрами;

·  несоответствие помещения лаборатории установленным требованиям.

Вопросы и задания.

63.  В каком документе определены цели и задачи анализа состояния измерений? Проанализируйте этот документ и назовите цели и задачи анализа.

64.  Что может стать объектом анализа состояния измерений?

65.  Как оформляются результаты анализа состояния измерений?

66.  Какие нарушения могут быть выявлены в процессе анализа состояния измерений?

 

§17. Физические величины

 

1. Основным объектом измерения в метрологии являются физические величины.

Физическая величина (краткая форма термина — «величина») применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.). Существуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные свойства материального мира. Механика базируется на трех основных величинах, теплотехника — на четырех, физика — на семи. ГОСТ 8.417 устанавливает семь основных физических величин — длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.

Совокупность чисел Q, отображающая различные по размеру однородные величины, должна быть совокупностью одинаково именованных чисел. Это именование является единицей ФВ или ее доли. Единица физической величины [Q] — это ФВ фиксированного размера, которой условно присвоено числовое значение, равное единице и применяемое для количественного выражения однородных ФВ.

Значение физической величины Q — это оценка ее размера в виде некоторого числа принятых для нее единиц.

Числовое значение физической величины q — отвлеченное число, выражающее отношение значения величины к соответствующей единице данной ФВ.

Уравнение

 

Q = q[Q]

называют основным уравнением измерения. Суть простейшего измерения состоит в сравнении ФВ Q с размерами выходной величины регулируемой многозначной меры q[Q]. В результате сравнения устанавливают, что

q[Q] <Q<(q+1)[Q].

 

Измерение — познавательный процесс, заключающийся в сравнении путем физического эксперимента данной ФВ с известной ФВ, принятой за единицу измерения.

Объект измерения - это реальный физический объект или явление материального мира. Объектом измерения являются не только физические объекты. Так, например, объектом измерения могут быть и мастерство артистов, спортсменов и т. д.

Объект измерения обладает многими свойствами и находится в многосторонних и сложных связях с другими объектами. Например, поверхность океана зависит от кривизны Земли, т. е. при измерении поверхности океана следует учитывать кривизну Земли. Или при измерении плотности вещества необходимо быть уверенным, что он не содержит других включений и т. д.

Поэтому перед измерением объект измерения должен быть достаточно изучен. Человек не в состоянии представить объект измерения целиком, во всем его многообразии и во всех его проявлениях. Поэтому исследование объекта возможно лишь на основании его модели. Таким образом, перед измерением необходимо представить себе модель исследуемого объекта.

Модель измерения - теоретико-физическая модель или математическая конструкция, которая отражает свойства объекта, которая отражает свойства объекта, существенные для данной измерительной задачи.

Основной постулат метрологии:

Любое измерение по шкале отношений предполагает сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении. При измерении физических величин в качестве известного размера естественно выбрать единицу СИ. Тогда процедура сравнения неизвестного значения с известным и выражения первого через второе в кратном или дольном отношении запишется следующим образом: .

2. Измеряемые величины имеют качественную и количественную характеристики. По наличию размерности ФВ делятся на размерные, т. е. имеющие размерность, и безразмерные.

Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim. Размерность основных величин — длины, массы и времени — обозначается соответствующими заглавными буквами:

.

Размерность производной физической величины выражается через размерность основных величин с помощью степенного одночлена:

,

где L, M, T – размерности основных физических величин.

Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).

Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.

Над размерностями можно проводить действия умножения, деления, возведения в степень и извлечение корня. Понятие размерности широко используется:

► Для перевода единиц из одной системы в другую;

► Для проверки правильности сложных расчетных формул;

► При выяснении зависимости между величинами;

► В теории физического подобия.

Простейший способ получения информации, который позволяет составить некоторое представление о размере измеряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например, оценивают по четырехбалльной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по двенадцатибалльной шкале, называемой международной сейсмической шкалой).

Недостатком реперных шкал является неопределенность интервалов между реперными точками. Например, по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу — алмазу, а другая наиболее мягкому — тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости. Так, если твердость алмаза по шкале 10, а кварца — 7, то это не означает, что первый тверже второго в 1,4 раза. Определение твердости путем вдавливания алмазной пирамиды (метод М.М. Хрущева) показывает, что твердость алмаза — 10060, а кварца — 1120, т.е. в 9 раз больше.

Более совершенна в этом отношении шкала интервалов. Примером ее может служить шкала измерения времени, которая разбита на крупные интервалы (годы), равные периоду обращения Земли вокруг Солнца: на более мелкие (сутки), равные периоду обращения Земли вокруг своей оси. По шкале интервалов можно судить не только о том, что один размер больше другого, но и том, на сколько больше. Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого. Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсчета может быть выбрано произвольно.

Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул: более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда. По шкале Цельсия интервал между этими реперами равен 273,16°С. По шкале отношений можно определить не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.

В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L = 1 м = 100 см = 1000 мм. Отмеченные три варианта являются значениями измеряемой величины — оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства тел, веществ, явлений и процессов. Некоторые свойства проявляются только качественно, другие — количественно. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой ФВ. Шкала физической величины — это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в документе МИ 2365-96.

 

Таблица. Основные ФВ.

Наименование величины

Ее обозначение

Размерность

длина L метр
масса M килограмм
время T секунда
сила электрического тока I ампер
температура Q кельвин
количество вещества N моль
сила света J кандела

Вопросы и задания.

67.  На скольких основных величинах базируется механика? теплотехника? физика?

68.  Что такое единица физической величины?

69.  Что такое значение физической величины?

70.  Что такое измерение?

71.  Что такое модель измерения?

72.  Что такое шкала физической величины?

 

§18. Международная система единиц физических величин

 

1. Генеральная конференция по мерам и весам (ГКМВ) в 1954 г. определила шесть основных единиц физических величин для их использования в международных отношениях: метр, килограмм, секунда, ампер, градус Кельвина и свеча. XI Генеральная конференция по мерам и весам в 1960 г. утвердила Международную систему единиц, обозначаемую SI (от начальных букв французского названия Systeme International d' Unites), на русском языке — СИ. В последующие годы Генеральная конференция приняла ряд дополнений и изменений, в результате чего в системе стало семь основных единиц, дополнительные и производные единицы физических величия, а также разработала следующие определения основных единиц:

единица длины — метр — длина пути, которую проходит свет в вакууме за 1/299792458 долю секунды;

единица массы — килограмм — масса, равная массе международного прототипа килограмма;

единица времени — секунда — продолжительность 9192631770 периодов излучения, которое соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей;

единица силы электрического тока - ампер - сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2 · 10-7 Η на каждый метр длины;

единица термодинамической температуры — кельвин — 1/273,16 часть термодинамической температуры тройной точки йоды. Допускается также применение шкалы Цельсия;

единица количества вещества — моль — количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг;

единица силы света — кандела — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 · 1012 Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср.

Приведенные определения довольно сложны и требуют достаточного уровня знаний, прежде всего в физике. Но они дают представление о природном, естественном происхождении принятых единиц, а толкование их усложнялось по мере развития науки н благодаря новым высоким достижениям теоретической и практической физики, механики, математики и других фундаментальных областей знаний. Это дало возможность, с одной стороны, представить основные единицы как достоверные и точные, а с другой — как объяснимые и как бы понятные для всех стран мира, что является главным условием для того, чтобы система единиц стала международной.

Международная система СИ считается наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов — радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.

2. СИ (Система Интернациональная) — международная система единиц, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике.

В настоящее время СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы. В этих немногих странах (например, в США) определения традиционных единиц были изменены — они стали определяться через единицы СИ.

В России действует ГОСТ 8.417—2002, предписывающий обязательное использование единиц СИ. В нём перечислены единицы физических величин, разрешённые к применению, приведены их международные и русские обозначения и установлены правила их использования.

ГОСТ 8.417 — государственный стандарт, устанавливающий единицы измерения, применяемые в Российской Федерации и некоторых других странах, входивших ранее в СССР. В стандарте определены наименования, обозначения, определения и правила применения этих единиц. В России с 1 сентября 2003 года действует «ГОСТ 8.417—2002 ГСИ. Единицы величин», заменивший «ГОСТ 8.417—81 ГСИ. Единицы физических величин».

Производные единицы могут быть выражены через основные с помощью математических операций: умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Десятичные кратные и дольные единицы образуют с помощью стандартных множителей и приставок СИ, присоединяемых к названию или обозначению единицы.


Кратность

Приставка

Обозначение

Пример

русская

международная

русское

международное

101

дека deca да da дал – декалитр

102

гекто hecto г h гПа – гектопаскаль

103

кило kilo к k кН – килоньютон

106

мега Mega М M МПа – мегапаскаль

109

гига Giga Г G ГГц – гигагерц

1012

тера Tera Т T ТВ – теравольт

1015

пета Peta П P Пфлоп – петафлоп

1018

экса Exa Э E ЭБ – эксабайт

1021

зетта Zetta З Z ЗэВ – зеттаэлектронвольт

1024

йотта Yotta И Y Йб - йоттабайт

Большинство приставок образовано от греческих слов.


Информация о работе «Метрология и ее разделы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 147234
Количество таблиц: 13
Количество изображений: 2

Похожие работы

Скачать
442965
6
19

... ГОСТ Р. Техническими регламентами II уровня являются: государственные и межгосударственные стандарты (далее — государственные стандарты), содержащие обязательные требования; правила по стандартизации, метрологии, сертификации; общероссийские классификаторы. Нормативные документы III уровня представлены стандартами, сфера применения которых ограничена, определенной отраслью народного хозяйства ...

Скачать
122681
43
22

... научных и организационных основ, технических средств, правил и норм для достижения единства и требуемой точности измерений. Метрологическое обеспечение Научная основа Теоретическая и прикладная метрология Организационная основа Государственная метрологическая служба, метрологические службы федеральных органов исполнительной власти и юридических лиц Нормативно-правовая основа Закон «Об ...

Скачать
96282
0
40

... измерений на рабочем месте. Чтобы эти службы эффективно выполняли стоящие перед ними задачи необходимо научное, техническое и правовое обеспечение их деятельности. Научной основой МО является метрология - наука об измерениях. Техническую основу МО составляют: система государственных эталонов единиц ФВ; система передачи размеров единиц ФВ от эталонов всем средствам измерений с помощью образцовых ...

Скачать
29208
0
0

... . В самом деле, точность определения длины меридиана и деления его на 40 миллионов частей оказывается очень невысокой. Подробно к этому мы вернемся при определении основных понятий и категорий метрологии. Здесь в кратком историческом экскурсе интересно вспомнить, что программа измерения длины парижского меридиана оказалась более полезной в составлении подробных карт перед наполеоновскими войнами, ...

0 комментариев


Наверх