1.1.2 Теплопотери через оконные проемы

Общие теплопотери в зоне проемов складываются из трансмиссионных теплопотерь и теплопотерь, связанных с вентиляцией. Если рассматривать только трансмиссионные теплопотери и сравнить между собой безрамное остекление с остеклением в створчатых и раздельных (составных) переплетах (рис. 1), то оказывается, что теплопотери на рисунке 1б, ниже вследствие значительно меньшей теплопроводности деревянных переплетов.

Значительная воздухопроницаемость и, следовательно, большой перенос тепла (рис. 2а) заметно уменьшаются с установкой в притворе уплотнения (рис. 2б). В то же время подобные уплотнения уменьшают приток в помещениях свежего воздуха, вследствие чего воздухообмен становится меньше требуемого для здоровья и хорошего самочувствия людей.

В наружных стенах жилых помещений рекомендуется устраивать окна с двойными или спаренными переплетами. Теплопотери окон определяются воздухопроницаемостью швов, поэтому на их герметизацию следует обращать особое внимание.

Сокращение теплопотерь через оконные и балконные заполнения жилых зданий

Требования, предъявляемые к оконным и балконным заполнениям

Оконные и балконные заполнения являются неотъемлемой частью фасадов, они составляют порядка 30…45 % площади наружных стен жилых зданий и предназначены для обеспечения необходимой естественной освещенности помещений и возможности контакта с окружающей средой.

Конструкции светопрозрачных ограждений подвержены силовым и не силовым воздействиям: снаружи на них воздействуют ветровые нагрузки, атмосферные осадки, переменные температура и влажность воздуха, солнечная радиация, шум, пыль и водорастворимые химические примеси в атмосферной влаге; изнутри – потоки тепла и пара, шум. Оконные и балконные заполнения также должны вписываться в архитектурный облик всего здания, легко монтироваться, быть ремонтнопригодными.

Установлено, что в зимний период теплопотери через окна жилых зданий составляют порядка 22…30 % (через стены 18…27 %) общих потерь тепла зданием. Это говорит о том, что какой бы хорошей не была дополнительная теплозащита стен, без проведения мероприятия по сокращению теплопотерь через окна, она не даст ожидаемого эффекта.

Согласно «Изменению № 3 СНиП II-3-79** «Строительная теплотехника» требуемое сопротивление теплопередаче окон изменилось не более чем в 1,5 раза (для стен в 2,5…3 раза). Фактически, значения сопротивлений теплопередаче окон зданий опорного жилищного фонда отличаются от нормативных гораздо более, чем в полтора раза. Главной причиной такого отклонения является их воздухопроницаемость, вызванная проникновением холодного воздух в межстекольную полость окон (соответственно и внутрь помещений), через не плотности и щели в притворах переплетов и фальцев (четвертей со стеклами). Это вызывает усиленную конвекцию воздуха в межстекольной полости и влечет снижение теплозащитной способности, нередко более, чем в три раза по сравнению с новыми нормами.

В новых нормах установлено, что воздухопроницаемость светопрозрачных ограждений жилых зданий должна быть такой, чтобы через каждый квадратный метр оконных и балконных заполнений в помещение проникало за час не более 6 кг воздуха. Это ограничение величины воздухопроницаемости позволяет уменьшить теплопотери.

Проблема воздухообмена через окна и воздухонепроницаемости окон в настоящее время особенно актуальна, и между этими факторами существует непосредственная связь. Изготовителей современных окон, как правило, упрекают в том, что создаваемые ими окна с высокой степенью уплотнения вместе с тем отрицательно воздействуют на условия микроклимата в жилых помещениях, что приводит к необходимости проведения определенных мероприятий в устройстве вентиляции. Ее чаще всего организовывают за счет периодического открывания соответствующих отверстий в окнах, обеспечивающих гарантированное поступление внутрь помещений требующегося количества свежего воздуха. Причем за такой вентиляцией должны следить жильцы домов, которым необходимо разъяснять, что правильная организация воздухообмена означает обеспечение необходимой, соответствующей потребностям вентиляции, а не длящегося часами открывания окон.

Задача воздухообмена (вентиляции) – гарантировать качество воздуха в зависимости от назначения помещения, обеспечить достаточный приток воздуха при включенных газовых плитах и создать определенное движение воздуха, исключающее возможность образования конденсата.

Требования к уплотнению окон устанавливаются нормами не только по воздухопроницаемости, но и с точки зрения предотвращения неконтролируемого проникания дождевой влаги через швы в окнах, которое может привести к повреждению стен здания в местах оконных и балконных проемов. От уплотнения в большей степени, чем теплозащита, зависит изоляция помещений от шума. Исследования проведенные в Германии показали, что звукоизоляция с помощью системы остекления и переплетов лишь тогда может составлять 100 %, когда коэффициент проницаемости швов (a), будет меньше 1. При увеличении коэффициента проницаемости швов (a) до 3 изоляция звука с помощью остекления снижается до 60…70 %. Это означает, что остекление окон, которое может изолировать шум до 40 дБ, при неплотных окнах со значением коэффициента (a) от 3 до 4, может обеспечить изоляцию шума не более 28 – 30 дБ.

Таким образом, теплозащитные свойства окон – это не только проблема экономии энергии, но и условие обеспечения комфортных условий внутри помещений.

Конструктивно-технологические решения окон и балконных дверей

Требования, предъявляемые в настоящее время к окнам, за исключением требований к внешнему виду, как правило, могут быть удовлетворены при использовании трех основных видов материалов – древесины, пластмассы и алюминия, а так же их комбинации. Каждый материал характеризуется специфическими свойствами, которые могут способствовать как достоинствам, так и недостаткам конструкции. Свойство материалов, а также воздействие окружающей среды и предъявляемые к ним требования следует принимать в расчет как при изготовлении, так и при монтаже окон и их эксплуатации.

Главными требованиями являются сохранение формы под воздействием климатических факторов, длительный срок службы, небольшие затраты на содержание и ремонт и благоприятное влияние на микроклимат помещения.

За последние два-три года российский рынок окон и балконных дверей претерпел существенные изменения.

Освоенные западными производителями в 80-е годы конструкции деревянных и поливинилхлоридных (ПВХ) окон с применением стеклопакетов, поворотно-откидных приборов и новых типов уплотняющих прокладок уверенно вытесняют из индивидуального и коттеджного строительства России низкокачественные деревянные окна отечественного производства.

Современные конструкции окон привлекают к себе, прежде всего удобством эксплуатации красивым внешним видом, а также высокими показателями по сопротивлению воздухопроницанию и звукоизоляции.

Базовыми элементами этих конструкций являются стеклопакеты. Основой для их широкого применения стало освоение новых мобильных и относительно недорогих технологий с применением надежных герметиков и термополированных стекол.

Варьируя различными видами стекол и пленок с теплоотражающими (и другими) покрытиями, межстекольными расстояниями и составом газонаполнения стеклопакетов, можно изготавливать окна с любыми заданными параметрами в пределах возможности основного конструктивного решения.

Сложность состоит в точном определении этих возможностей и правильном выборе конструкций окон с учетом эксплуатационных характеристик температурных, ветровых и др. нагрузок, присущих климатическим условиям России.

Многих потребителей окон в России беспокоит вопрос о возможности применения ПВХ окон в условиях отрицательных температур. Сейчас можно с уверенностью сказать, что поливинилхлоридные профили, сертифицированные в системе Минстроя России и прошедшие испытания на долговечность в независимом испытательном центре «Стройполимертрест», могут применяться при минусовых температурах – 40 °С. Ведущие германские фирмы «КВЕ», «Gealan», «Rehau» провели испытания и подтвердили возможность эксплуатации своих изделий при температуре - 50С. Поэтому применение ПВХ профилей в конструкциях окон (с учетом рекомендаций Минстроя России, установленных в сертификатах соответствия) не вызывает опасения, тем более, что ПВХ профили успешно проходят гигиенические испытания в организациях санэпидемнадзора России и других стран.

Что касается ценовых показателей, то практика западного рынка показывает, что качественные окна из древесины дороже аналогичных из поливинилхлорида (хотя для условий российского производства соотношения ценовых показателей могут быть иными).

Сложность применения новых конструкций в условиях России состоит в другом: результаты испытаний стеклопакетов на долговечность показывают, что герметичность стеклопакетов может быть гарантирована (при строгом соблюдении технологии их изготовления) в течении 10…15 лет эксплуатации. Потеря герметичности влияет на образование конденсата внутри стеклопакета в холодные периоды года и снижение коэффициента светопропускания. С точки зрения теплозащиты, стеклопакет может работать еще длительное время. Однако при условии заполнения стеклопакета газом или использовании стекол с теплоотражающим покрытием потеря герметичности резко изменит эксплуатационные показатели изделия.

Технология изготовления стеклопакетов, качество применяемых герметиков и организация контроля качества на российских предприятиях, изготавливающих стеклопакеты, в настоящее время являются наиболее слабым местом в общем процессе производства окон и балконных дверей.

Теоретически опасность разгерметизации стеклопакета усиливается при его эксплуатации при температурах – 30 оС и ниже. В этих условиях следует применять конструкции, в которых стеклопакет защищен от резких температурных перепадов впереди стоящим стеклом, т.е. конструкция, «стекло + стеклопакет» по аналогии с ГОСТ 24699-81.

В настоящее время в стеклопакетах иногда применяют стекла с нанесенными на их поверхность определенных покрытий на основе оксидов металлов, стойких к атмосферным воздействиям. Существуют два типа такого рода покрытий: «твердое» (К-стекло) и «мягкое» (Е-стекло).

К-стекло получают на заводе методом химической реакции при высокой температуре (метод пиролиза). Получение Е-стекла предусматривает нанесение на его поверхность низкоэмиссионных оптических покрытий. Технология нанесения требует использования высоковакуумного оборудования с системой магнетронного распыления.

Тем не менее, наивысшее термическое сопротивление имеют конструкции с применением газонаполненных стеклопакетов (заполнение криптоном) с теплозащитными стеклами, и в Северной климатической зоне без применения таких конструкций трудно обеспечить нормируемое сопротивление теплопередаче окон и балконных дверей.

Другой проблемой является узкая коробка (до 60 мм) ряда конструкций окон из ПВХ и деревянных окон со стеклопакетами, что повышает возможность образования мостиков холода на границе узлов примыкания к стеновым панелям. Увеличение ширины коробки удорожает и без того дорогостоящие изделия. Опасность возникновения «мостиков холода» накладывает дополнительные требования к качеству монтажа изделий и правильному проектированию узлов примыкания. Следует отметить, что проектирование узлов примыкания и выбор материалов для заполнения монтажных зазоров должны учитывать изменение линейных размеров окон ПВХ, возникающее при эксплуатации этих изделий (зависящее также от способа крепления коробок окон к стенам проема). Российским производителям стандартных конструкций деревянных окон необходимо усилить работу по модернизации этих изделий на базе применения новых светопрозрачных элементов, уплотняющих прокладок и фурнитуры.

Хорошую перспективу имеет улучшенная конструкция спаренной столярки по ГОСТ 11214-86 при ее изготовлении с двойным притвором и тепловым экраном на основе полиэтилентерефталатной пленки с теплоотражающим покрытием, установленной в межстекольном пространстве. Даже при условии потери качественных показателей пленки за 8…10 лет эксплуатации, тепловой экран легко заменяется на новый. Сопротивление теплопередаче таких окон 0,65 м2·°С/Вт.

При замене внутреннего стекла по ГОСТ 111-90 деревянных окон с тройным остеклением (ГОСТ 16289-86) на стекло с теплозащитным покрытием и использовании конструкций с усиленным сечением профилей показатель сопротивления теплопередаче таких окон повышается до 0,65 м2·°С/Вт, а при дополнительной установке теплового экрана в спаренной части окон – до 0,85 м2·°С/Вт.

Вполне возможно, что проблема климатических нагрузок России потребует разработку новой конструкции дерево - пластмассовых окон, где древесина, отделанная полимерными материалами, будет применяться для изготовления коробок, а пластмасса – для изготовления створок.

Российские конструкции окон ближайшего будущего определяются в первую очередь растущими пропорционально ценам на энергоносители требованиями повышения сопротивления теплопередаче, что видно из табл. 3.2, рекомендованной Минстроем России (письмо № СП-232/13 от 17 апреля 1997 г.) в свете подготовки изменения СНиП II-3-79** «Строительная теплотехника» и начатой работы по пересмотру действующих стандартов на оконные блоки.

Таблица требует определенных пояснений, которые следует учитывать как проектирующим организациям, так и изготовителям окон:

·  сопротивление теплопередаче профилей из ПВХ принято 0,60 м2·°С/Вт (трехкамерная конструкция профиля);

·  эмиссионная способность стекол и пленок с теплоотражающими покрытиями 0,1-0,2;

·  в тех случаях, когда межстекольное расстояние в стеклопакетах не приведено, имеются в виду базовые конструкции 4-14-4 (4-16-4) для однокамерных стеклопакетов и 4-6-4-6-4 для двухкамерных стеклопакетов;

·  под усиленными сечениями профилей деревянных окон следует понимать сечения, установленные для окон общественных зданий в ГОСТ 11214-86, ГОСТ 16289-86, ГОСТ 24699-81. Усиленные сечения ПВХ окон должны иметь профиль коробки шириной не менее 70 мм и профиль створки, позволяющий устанавливать стеклопакет толщиной до 36 мм. Специальные варианты усиленных сечений профилей следует предусматривать в технических условиях на новые конструкции окон, согласованных с Минстроем России.

Примечания:

1. До внесения изменений в ГОСТ 11214 – 86, ГОСТ 16289 – 86, ГОСТ 24699 – 81, ГОСТ 24700 – 81 рекомендуется по согласованию с Минстроем России проводить работы по модернизации конструктивных решений окон с учетом современного опыта их производства и применения. При этом в конструкциях окон с сопротивлением теплопередаче выше 0,4 м2·°С/Вт рекомендуется применять 2 ряда уплотнительных прокладок.

2. Сопротивление теплопередаче глухой части балконных дверей должно быть не менее чем в 1,5 раза выше сопротивления теплопередаче светопрозрачной части этих изделий.

3. Справочное значение Roприведено для конструкций с отношением площади остекления к площади заполнения светового проема 0,7…0,75.

Приведенные в таблице конструктивные решения не исключают применения других вариантов конструкций окон. Тем не менее, возможность их применения должна быть подтверждена типовыми испытаниями на сопротивление теплопередаче в испытательном центре НИИ строительной физики и других центрах (лабораториях), аккредитованных в Системе сертификации ГОСТ-Р в строительстве на право проведения таких испытаний.

Следует, однако, подчеркнуть, что главным фактором для окон является их функция, материал же из которого они изготовлены, является вторичным фактором. Возникновение проблем вызывается, как правило, не самим материалом, а его неправильным применением, неудачной конструкцией окон или чрезмерными требованиями к его прочности или термическим свойствам.

В научном отделении института оконной техники в Розенхайме разработана таблица, дающая представление о том, какие критерии играют или могут играть роль при оценке оконных переплетов (для оценки применяется четырехбальная шкала). С помощью данной таблицы можно легко выбрать материал оконных и балконных переплетов для определенных условий их замены и эксплуатации.

Методы сокращения теплопотерь через оконные и балконные заполнения

Сокращения теплопотерь через оконные заполнения зданий опорного жилищного фонда можно добиться заменой старых окон на новые или проведением мероприятий, направленных на доведение теплозащитных качеств окон до нормативных требований, действующих в настоящее время.

Замена окон может быть полная или частичная, она зависит в основном от конструктивного решения оконного проема (с четвертью или без нее), состояния и конструкции оконной коробки, материала новых окон, проводимой теплозащиты стен и наличия жильцов в доме.

В большинстве зданий опорного жилищного фонда установку оконных и балконных заполнений производили в стеновые проемы, имеющие четверть или без нее.

Коробку устанавливали в проем и крепили гвоздями к деревянным пробкам в бетонных стенах или ершами, забиваемыми в швы кладки в каменных стенах. Защиту сопряжения коробки со стеной от инфильтрации холодного воздуха в каменных и бетонных стенах обеспечивали: верхняя и боковые четверти в проемах; уплотнение зазоров между коробкой и стеной конопаткой; специальные внутренние наличники или штукатурка откосов. В стенах, не имеющих четверти, стык коробки со стеной защищали наружным наличником. Защита коробки от увлажнения и гниения в бетонных и каменных стенах достигалась выполнением ее из сухой антисептированной древесины и наружной оберткой по контуру гидроизоляционным материалом (чаще всего прокладочным рубероидом).

Как уже указывалось, качество окон и срок их эксплуатации зависит от качества монтажа. При этом материал, из которого изготовлены окна и балконные двери существенного значения не имеет, а в большинстве случаев наибольшее влияние оказывают условия монтажа и квалифицированное и правильное его выполнение, в том числе учет практического опыта, собственных ошибок, извлеченных из неудачных примеров модернизации.

При замене оконных и балконных заполнений необходимо сделать правильный выбор между полной и частичной заменой окон. Он производится на основе изучения всех возможных технологий монтажа.

Полная разборка старых окон является правильным решением в тех случаях, когда выполнение этой работы не представляет трудностей. Например, в случае, когда оконный проем не имеет четверти, а дополнительная теплоизоляция стены устраивается с наружной стороны, разборка старых конструкций оконных и балконных заполнений снаружи является относительно простым делом. После того, как сняты внешние декоративные элементы, а оконная коробка освобождена от крепления к проему и подоконнику, конструкция окна вынимается наружу. При этом не создается много грязи в квартире и больших неудобств для проживающих в ней людей.

Технология работ по монтажу оконных и балконных заполнений в этом случае заключается в следующем: проемы освобождают от остатков цементного раствора; устанавливают и выравнивают оконные и балконные заполнения, которые по всем направлениям на 5 мм должен быть меньше старых коробок; в зависимости от конструкции и материала окон и балконных заполнений производят закрепления их в проемах; швы примыкания заполняют строительным герметиком, например «MAKROFLEX» (вспененный полиуретановый пластик, расширяющийся при нанесении на поверхность); обрамление окна наличниками с наружной стороны производят параллельно с работами по утеплению фасадов, а с внутренней - непосредственно после установки.

При наличии четверти полная разборка рациональна, когда теплозащита стены производится с внутренней стороны, а работы ведутся с отселением жильцов. Это связано с тем, что при вынимании окон из проемов не происходит повреждения фасадов, но создаются большие неудобства для жильцов квартир.

В связи с тем, что большинство зданий опорного жилищного фонда имеют четверти, а объемы работ, направленных на повышение теплозащитных качеств ограждающих конструкций, довольно значительны, то во многих случаях об отселении жильцов не может быть и речи. Поэтому, наиболее целесообразной является частичная разборка оконных и балконных заполнений.

Замена окон рекомендуемым способом характерна тем, что отсутствуют сопутствующие работы, направленные на восстановление поврежденных участков стены, которые могут замедлять и удорожать модернизацию окон. Правда, установка в старые оконные коробки новых окон, специально изготовленных для этой цели, дает преимущество лишь тогда, когда эти рамы подрезаны насколько возможно, так как в противном случае очень большая ширина крайних элементов существенно искажает внешний вид окон. Подрезка старых оконных коробок требует определенного опыта, так как связана с применением ручных циркулярных пил и подрезания старых рам до самой стены в соответствии с проектом. Соответствующей квалификации требует не только подрезка, но и остальные рабочие операции. Например, старые оконные коробки в процессе выполнения работы могут рассыпаться. Поэтому, чтобы обеспечить их надежное крепление, приходится применять специальные дюбели, которые служат опорой нового окна.

При частичной замене окон особое внимание необходимо обратить на правильную герметизацию при уплотнении старых и новых элементов и возникающих при этом соединительных швов. Для этого после установки окна монтируют внутренний наличник, который должен закрыть следы монтажа и открытые швы, чтобы придать эстетический вид окну изнутри.

С наружной стороны окно обрамляют наличником, который полностью закрывает старую оконную коробку, при этом окно сохраняет свой первоначальный внешний вид. Этот элемент выполняет, кроме того, особую задачу, состоящую в создании плотных примыканий, препятствующих воздействию климатических факторов. Работы по установке наружного наличника ведутся одновременно с утеплением стен, после установки слива.

Однако бытует мнение, что при технологии, основанной на частичной замене оконных и балконных заполнений, получаемые конструкции будут иметь небольшой срок службы. Это обосновывают тем, что старое дерево поражено грибком, и поэтому очень скоро и новая часть дополнительного переплета будет повреждена. В [10] доказано, что это мнение неверно, так как наибольшее распространение имеет оконный грибок, который развивается в заболонной части древесины (прежде всего сосны) под влиянием постоянного увлажнения. Требуемое для развития грибка поступление влаги, составляющее 30…40 %, можно исключить, благодаря правильному конструктивному решению и ведению работ, что одновременно исключает опасность дальнейшего поражения грибком старой древесины, а также новых рам.

Полная замена старых окон не такое уж дешевое дело, поэтому в практике повышения их теплозащитных качеств существуют мероприятия, благодаря которым менее дорогим способом может быть достигнуто повышение изолирующей способности эксплуатируемых окон.

К ним можно отнести установку дополнительных съемных переплетов, закрепляемых на существующих с помощью фиксаторов. При спаренных переплетах третий устанавливают со стороны помещения, а при раздельных – в межстекольное пространство на внутреннем переплете. Установка третьего переплета позволяет увеличить сопротивление теплопередаче (с раздельными переплетами) от 0,42 до 0,55 м2·°С/Вт и повысить температуру внутренней поверхности окна с 6 до 8,1 °С.

Иногда в практике повышения теплозащитных качеств окон используют стеклопакеты, вставляемые вместо одинарного стекла или навешиваемые вместо внутренних створок.

Снижение теплопотерь через остекление и улучшение тепловой и световой обстановки можно обеспечивать также применением специальных стекол и светотехнических пленок. Установка пленочных теплоотражающих стекол разбивает межстекольное пространство на два воздушных зазора меньших размеров, но с суммарным термическим сопротивлением большим, чем сопротивление исходного межстекольного пространства.

При устройстве дополнительных мероприятий по повышению теплозащитных качеств окон необходимо учесть, что их конструктивные элементы в период эксплуатации получили определенную деформацию и разгерметизацию за счет воздействия воздушных (ветровых) напоров, температурных воздействий и периодических увлажнений деревянных элементов. Воздушные потокис постоянно изменяющимися углами атаки своими порывистыми ударами вызывают волновые изгибные колебания большеразмерного оконного стеклянного листа в самых разнообразных направлениях по всей его плоскости. Испытывая колебания, кромки стекла передают отрывные усилия на полки фальцев и на штапики, расположенные с наружной стороны стекла. Поскольку фальцы служат стационарными упорами для стекла, а деревянные штапики являются податливыми элементами, то они испытывают отрывные усилия, и это ослабляет крепление штапиков, разрушает наружные слои замазки и разгерметизирует фальцы. Прочность соединения штапиков в фальцах наружных створок переплетов постепенно ослабевает, между ними и стеклом образуются сквозные щели и полости, через которые в помещения проникает холодный воздух, пыль, газы и дождевая вода.

Например, при размерах окна 1,5 х 1,5 м общая длина щелей и неплотностей в результате их разгерметизации может составлять порядка 12 м. То есть инфильтрация холодного воздуха может происходить по всему периметру фальцев и по периметру окна через притворы наружных створок. В стандартных окнах размер горизонтальной полки фальца равен 15 мм, вертикальной - 7 мм, высота штапика, прижимающего с наружной стороны стекло, 10 мм. Штапики обычно устанавливают на 1…2 слоя замазки, и их кромки оказываются выше кромок калевки на переплетах не менее чем на 3…5 мм. Таким образом, дождевая вода, которая собирается и накапливается снаружи в промежутке между штапиком и стеклом на горизонтальных участках переплетов, всегда оказывается выше внутренней калевки, просачивается через щели в замазке и переливается в межстекольную полость окна. В неравнобоком профиле фальца наружных переплетов стандартных окон происходит и более активный процесс ослабления и отрыва штапиков. Такой характер разгерметиации можно представить как действие элементарного отрезка рычага стекла на штапик, передающего на него ветровое отрывное усилие: чем меньше высота вертикальной полки фальца, тем больше отрывное усилие, и наоборот.

В связи с этим в Брестском политехническом институте разработан метод герметизации окон при реконструкции. Суть этого способа заключается в установке дополнительного стандартного штапика на замазке или краске на калевках по внутреннему периметру переплетов. Дополнительный штапик увеличивает высоту полок фальцев и тем самым способствует значительному уменьшению отрывных ветровых усилий, передающихся от стекла на наружные штапики, а также обеспечивает герметизацию стекла в фальцах.

Таким образом, можно констатировать, что все решения, стоимость реализации которых меньше или равна половине стоимости полной модернизации окна, позволяют значительно улучшить изолирующую способность окон. Вместе с тем следует также учитывать, что рентабельность конструкции зависит от срока ее службы, который для новых высококачественных окон принимается равным 50 годам.

Для теплозащиты конструкций окон имеют значение так называемые временные теплозащитные устройства. Речь идет об эффективности жалюзей, ставней, раздвижных ставней и т.п. Эти элементы не только предохраняют конструкции окон от разрушения, но и существенно уменьшают теплоотдачу через окна в ночные часы, когда окнами не пользуются

 


Информация о работе «Системы теплогазоснабжения и вентиляции»
Раздел: Строительство
Количество знаков с пробелами: 240395
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
14411
0
0

... экономики, организации труда и организации производства; - основы трудового законодательства; -  правила и нормы охраны труда. Инженер по специальности «Теплогазоснабжение и вентиляция» должен знать: -  социологические основы регионального и городского проектирования, учет требований населения по теплоснабжению, газоснабжению и вентиляции; -  основные научно-технические проблемы и перспективы ...

Скачать
20318
6
31

... F=81/3600*1=0.02 [ м2 ] Принимаем канал размером 140140 [мм] =81/3600*0.02=1.12 [м/с] Ртр=0.21*1.51*8.82=2.26 [ Па ] Рмс=3.8*(1.2*1.122)/2=3.62 [ Па ] Ркан=3.62+6.31= Следовательно для вентиляции гаража принимаем три канала сечением 140х140 мм. Ркан=10.0[ Па ] < 12.42 [ Па ]Заключение В результате выбора параметров внутреннего и наружного воздуха произведен выбор конструкции ...

Скачать
31543
3
2

... (2.3.30) где μ – коэффициент плотности сети низкого давления, 1/м; q – удельная нагрузка сети низкого давления, м3/ч м. На основании статистического анализа технико-экономических показателей реальных проектов газоснабжения предложены следующие расчетные уравнения: , (2.3.31)  , (2.3.32) где m – плотность населения газоснабжаемой территории, чел/га; l ...

Скачать
120331
21
16

... фундамента. 59 Нормативный срок службы водозаборной арматуры, годы: А) 5; В) 10; С) 15; D) 20; E) 25. 60 Нормативный срок службы чугунных радиаторов, годы: А) 5; В) 10; С) 20; D) 30; E) 40. 61 Какой параметр ограничивается во всех инженерных системах? A) давление; B) скорость; C) температура; D) вязкость; E) расход. 62 Какая инженерная система рассчитывается для трех различных ...

0 комментариев


Наверх