2.3  Особенности тиристорных выпрямителей

Управляемые тиристорные выпрямители позволяют преобразовывать переменный ток в постоянный и плавно изменять выпрямленное напряжение от нуля до номинального значения.

Силовые схемы выпрямления для тиристоров анологичны схемам выпрямления с диодами. Для изменения выпрямленного напряжения необходимо иметь специальное устройство, называемое системой импульсно-фазового управления (СИФУ), которое выполняет две функции: формирует управляющий импульс и смещает его по фазе относительно напряжения сети. Устройство СИФУ позволяет изменять угол регулирования α тиристорного преобразователя от 0 до 150-180 эл. град.

2.4 Трёхфазная нулевая схема

В трёхфазной нулевой схеме, где вместо диодов включены тиристоры (рисунок 2.4.1,а) управляющие импульсы, поступающие от СИФУ должны быть соответствующим образом сфазированы с напряжением трансформатора, т.е. подаваться в нужные моменты времени. Сдвиг импульсов относительно базовой точки происходит в сторону отставания. За базовые необходимо брать точки естественного отпирания тиристора (точки а, б, в, рисунок 2.4.1,б) Если управляющие импульсы подавать на тиристоры V1,V2 и V3 соответственно в точках а, б, в, получим наибольшее выпрямленное напряжении. При подаче управляющих импульсов с отставанием по отношению к точке естественного отпирания на угол альфа, то тиристоры открываются позже, а среднее выпрямленное напряжение будет меньше, чем наибольшее выпрямленное напряжение.

2.5  Трёхфазная мостовая схема

В трёхфазной мостовой схеме (рисунок 2.5.1) имеется шесть тиристоров, которые образуют две группы: с общим катодным выводом (V1, V3 и V5) и общим анодным выводом (V2, V4 и V6), а ток в любой момент протекает минимум через два тиристора, расположенных в разных группах. Надёжная работа тиристорного преобразователя возможна при одновременном открытии тиристоров обеих групп, что обеспечивается схемой управления СИФУ, в которой предусматривается формирование двух сдвоенных импульсов, сдвинутых относительно друг друга на 60 эл. град. В этом случае имеет место одновременная подача импульсов в тиристоры двух различных групп (V1 и V6, V1 и V2, V3 и V2 и т.д.). Наличие двух групп тиристоров обеспечивает шестифазное выпрямление (рисунок 2.5.2) напряжения.

2.6  Применение тиристорных преобразователей

Тиристорные преобразователи широко применяют для питания обмоток возбуждения и якоря электрических двигателей.

При питании обмотки возбуждения, которая обладает достаточно большой индуктивностью, не возникает особых осложнений. Более того, наличие индуктивности способствует сглаживанию тока в цепи нагрузки. При питании якоря двигателя необходимо учитывать, что при вращении последнего возникает противо-эдс, которая влияет на работу системы выпрямитель – двигатель, ухудшая характеристики электропривода.

Электрический ток проходит через двигатель, когда мгновенное значение выпрямленного напряжения будет больше противо-эдс. Таким образом ток якоря имеет прерывистый характер. Пульсирующий ток увеличивает тепловые потери. Для уменьшения и устранения зоны прерывистых токов, а также снижения пульсаций тока в якорную цепь включают сглаживающий дроссель. Ток в цепи нагрузки не может спадать мгновенно, так как в катушке индуктивности запасается электромагнитная энергия. Поэтому даже при напряжении преобразователя меньше противо-эдс двигателя, ток в якорной цепи может протекать за счет этой энергии, что позволяет снизить или вообще устранить зону прерывистых токов и уменьшить их пульсацию.


3. Устройство силовых блоков

Одним из основных узлов преобразователя является силовой выпрямительный ток, куда входят полупроводниковые приборы и охладители.

Для полупроводниковых приборов применяют 2 способа охлаждения: воздушное, жидкостное. Приборы на небольшие токи (10-25А) имеющие воздушное охлаждение снабжают охладителями в виде пластин.

Воздушные охладители для полупроводниковых приборов штыревого типа имеют радиаторы с резьбовым отверстием под шпильку на катодном выводе для диодов. Охладитель выполняют дл одного или нескольких полупроводниковых приборов. Воздушное охлаждение может быть естественным и принудительным.

Принудительное охлаждение предусматривает установку вентиляторов, которые продувают воздух, через вентиляционные каналы.


4. Монтаж и обслуживание преобразовательной полупроводниковой техники

Нормальная работа полупроводниковых преобразовательных устройств зависит от окружающей среды и условий эксплуатации. Как правило, агрегаты общепромышленного использования предназначены для работы в закрытых стационарных помещениях при следующих условиях: температура окружающей среды от 1 до 50˚C; относительная влажность воздуха не более 85-90% при 20˚ или 50% при 40˚C; отсутствие в окружающей среде агрессивных газов и паров, разрушающих металлы и изоляцию.

Преобразовательные агрегаты устанавливают на металлических, железобетонных перекрытиях или бетонных полах с креплением анкерного болтами или приваркой опорного пояса. На ровном полу с уклоном не более 1-2˚ шкаф закреплять не обязательно. После установки проверяют отвесом отклонение шкафа от вертикали, которое не должно превышать 5˚.

Для присоединения силовых токопроводов к преобразовательным шкафам необходимо использовать гибкие компенсаторы, что позволяет избежать возможных механических смещений оборудования внутри шкафа. Затяжку болтовых соединений ошиновки и кабельных линий выполняют вручную.

После окончания монтажных работ проверяют сопротивление изоляции силовых цепей напряжением выше 1000В (должно быть ниже 50МОм при комнатной температуре) и цепей управления (должно быть не ниже 0,5 МОм). В силовых цепях заземление проверяют мегомметром на 2,5 кВ, а в цепях управления – на 0,5 кВ. Все шкафы и элементы преобразовательных устройств необходимо заземлять в соответствии с ПУЭ.

Основное условие правильной работы тиристоров выпрямителя – обеспечение строгой последовательности и расположения во времени импульсов на соответствующих управляющих электродах (фазировка системы управления).

Для контроля за нормальным техническим состоянием преобразовательной техники предусматривают периодические (один раз в месяц) планово-предупредительные осмотры и профилактический ремонт (один раз в год).

При ежемесячной проверке проводят визуальный осмотр лакокрасочных покрытий, мест пайки, проверяют надёжность контактных соединений, а также чистоту охлаждающего воздуха для установок с принудительной вентиляцией. При содержании в воздухе посторонних частиц более 0,7 мг/м³ принимают меры по его отчистке.

Обслуживающий персонал проводит один раз в год следующие работы: удаляет сжатым воздухом пыль с ребристых поверхностей радиаторов, ячеек и кассет системы управления защиты; проверяет и подтягивает болтовые соединения; очищает кисточкой, смоченной бензином или уайт-спиритом, изоляцию ячеек, печатных плат, кассет с последующей просушкой обработанных изделий; протирает этиловым спиртом все контактные соединения; проверяет электрическую прочность и сопротивление изоляции в соответствии с ГОСТом и инструкцией по эксплуатации преобразовательных установок, а так же состояние заземляющих устройств в соответствии с ПУЭ.

При аварийной ситуации в кратчайшие сроки выполняют следующие работы: переводят питание двигателя или другого преобразователя постоянного тока на резервный источник (если он предусмотрен) и по схеме в определённой последовательности выявляют неисправность. Современные преобразовательные агрегаты оснащают устройствами диагностики, что облегчает задачу обслуживающего персонала по обнаружению неисправности и, в частности, помогает обнаружить вышедший из строя полупроводниковый прибор, который необходимо заменить. Вышедший из строя диод или тиристор заменяют в такой последовательности: снимают индивидуальный охладитель вышедшим из строя прибором; подбирают прибор с такими же параметрами, которые имел вышедший из строя прибор; устанавливают новый прибор.


5. Охрана труда

 

5.1 Горючие электроизоляционные материалы

Горючими в электроустановках являются изоляционные масла в выключателях и трансформаторах, изоляционная резина, пластмассы, лаки, бумажная и полиэтиленовая изоляция кабелей, водород, применяемый для охлаждения генераторов и синхронных компенсаторов и выделяющийся при заряде аккумуляторных батарей.

5.2 Причины пожаров в электроустановках

Основными причинами пожаров в электроустановках являются короткие замыкания в электрических сетях, машинах и аппаратах; токовые перегрузки; перегревы мест соединения токопроводящих частей из-за больших переходных сопротивлений; электрическая дуга и искрения; воспламенения горючих материалов, находящихся возле электроприемников, оставленных без присмотра, и др.

5.3 Причины короткого замыкания в электроустановках

Короткие замыкания возникают в результате нарушения изоляции токопроводящих частей, механических воздействий, увлажнения, воздействия химически активных веществ. Короткие замыкания могут возникнуть от перегрузки сетей током. Под воздействием большого рабочего тока, на который изоляция проводов и обмоток не рассчитана, возникает её перегрев, пробой и короткое замыкание. При этом мгновенно увеличивается ток во всех элементах электрической цепи и начинает выделяться большое количество теплоты. Электропроводка не в состоянии отдать эту теплоту в окружающую среду: происходит её воспламенение. Перегрузки и короткие замыкания недопустимы в любых случаях. Для их предотвращения необходимо, чтобы параметры сетей (марка проводов и кабелей, прокладка, сечение жил, исполнение, класс изоляции машин и т.п.) соответствовали электрическим параметрам (току, напряжению, нагрузке). Следует строго соблюдать периодичность и качество осмотров, ремонтов, испытаний электрооборудования.

5.4 Перегревы в местах соединений

Не менее опасны перегревы в местах больших переходных сопротивлений из-за плохих контактов в соединениях (окисление мест соединения, неплотное прилегание проводов к зажимам и контактам электроприборов).

Чтобы перегревы не происходили, необходимо тщательно зачищать контакты, применять заводские наконечники и оконцеватели проводов, обеспечивать плотное прилегания контактов.

5.5 Причины возникновения электрической дуги в электроустановках

 

Электрические дуги (температура 3000˚C и более) и искрения возникают во время коммутационных переключений или при ошибочных операциях с коммутационной аппаратурой, при разрядах статического электричества, атмосферных перенапряжениях. Для предупреждения загорания применяют дугогасящие устройства, разрядники, заземление. Все оперативные переключения в электроустановках выполняют в строгом соответствии с правилами безопасности.


5.6 Требования к защитным заземлениям и занулениям

Защитное заземление или зануление должно быть исправно (целостность соединений, плотность контактов). По условиям пожаробезопасности сопротивление изоляции контролируется особо тщательно: измерение производится 2 раза в год в помещениях с повышенной опасностью и один раз в год – без повышенной опасности. Протоколы измерения сопротивления изоляции, заземлений или занулений должны находиться в цеху или лаборатории.

5.7 Ответственность электроперсонала

Недопустимы провисания проводов, соприкосновение их между собой и с конструктивными частями, сети-времянки (за исключением ремонтных работ). В условиях эксплуатации присоединение новых электродвигателей, ламп, нагревательных приборов или замена существующих более мощными разрешается только с ведома лица, ответственного за электрохозяйство, и с учётом пропускной способности сети (проводов, контактов, штепселей, выключателей и т.п.).

За электрохозяйством следит только электрический персонал. Неисправное электрооборудование необходимо немедленно отключать; нельзя перегибать и скручивать электропровода или оттягивать светильники и электропроводку; для светильников не допускается применять абажуры из бумаги и горючих материалов без каркасов; запрещается использовать ролики, выключатели, штепсельные розетки для подвешивания плакатов, одежды, а так же заклеивать или закрывать части электросети. После окончания работы все электрохозяйство должно быть обесточено.


Список литературы

1. Брендихин А.Н., Ландесман Э.И. Охрана труда. – М.: Высш. шк., 1990.

2. Воронина А.А., Шибенко Н.Ф. Безопасность труда в электроустановках. – М.: Высш. шк. 1994.

3. Голыгин А.Ф., Ильяшенко Л.А. Устройство и обслуживание электрооборудования промышленных предприятий. – М.: Высш. шк., 2000.

4. Корнилов Ю.В., Крюков В.И. Обслуживание и ремонт электрооборудования промышленных предприятий. – М.: Высш. шк. 2000.

5. Павлович С.Н., Фираго Б.И. Ремонт и обслуживание электрооборудования. – Ростов-на-Дону: «Феникс» 2002.

6. Синдеев Ю.Г. Электротехника с основами электроники. – Ростов-на-Дону: «Феникс» 2006.

7. Федорченко А.А., Синдеев Ю.Г. Электротехника с основами электроники. – М.: Издательско-торговая корпорация «Дашков и К°» 2006.


Информация о работе «Схемы выпрямления»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 22788
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
60330
12
39

... 4 Содержание отчета Схема включения однофазного счетчика в сеть. Схема включения трехфазного счетчика (п.7). Таблица с результатами измеренных и вычисленных значений. 3. Выводы о результатах поверки счетчика. Контрольные вопросы. 1. Единицы измерения электрической энергии. 2. Основные части счетчика и их назначение. 3. Принцип работы индукционного ...

Скачать
31383
5
10

... по току определяется из выражения . При условии (режим низкоомной нагрузки) выражение для коэффициента приводится к виду . Таким образом, в режиме низкоомной нагрузки величина параметра . Анализ схемы эмиттерного повторителя показывает, что в соответствии с законами Кирхгофа и Ома, коэффициент усиления ЭП по напряжению . Здесь – эквивалентное сопротивление нагрузки ЭП; – входное сопротивление ...

Скачать
34159
4
15

... сигнал прерывания на вход порта Р3.1 и Р3.2 при нажатии одной из клавиш прерывания. 2 Разработка принципиальной схемы   В полную принципиальную схему контроллера, кроме описанного выше блока процессора, входят ЦАП, АЦП, клавиатура, индикаторы. 2.1 Описание микроконтроллера AT89C5131A-L содержит следующие компоненты: 32 кбайт флэш-памяти с поддержкой внутрисистемного программирования ...

Скачать
126135
22
0

... пунктов (ОУП) линий междугородной телефонно-телеграфной связи, для питания аппаратуры телеграфов и районных узлов связи (РУС). ВУТ с номинальным напряжением 60В применяются для питания аппаратуры автоматических телефонных станций (АТС) городской телефонной сети, аппаратуры, междугородной автоматики, питания, аппаратуры телеграфов и РУС. ВУТ 152/50 применяются для питания моторных цепей. ВУТ 280 ...

0 комментариев


Наверх