4. Возможности нанотехнологий

Практическое воплощение перечисленных далее прогнозов ожидается в период до 2060 г., хотя с 2025 г. возможна и более ранняя реализация отдельных пунктов. Такие оценки выдвигает немалое количество экспертов. Пока их прогнозы продолжают весьма точно сбываться, и не видно причин, способных этим прогнозам помешать. Многое зависит, прежде всего, от доступности вычислительных ресурсов, необходимых для моделирования нанотехнологических процессов.

Возможности нанотехнологий, которые будут доступны человечеству через 50—60 лет, таковы:

программируемое позиционирование молекул с точностью 0,1 нм;

работа наноустройства с частотой 1 ГГц;

молекулярная сборка со скоростью 1 млн. операций в секунду на 1 наноустройство;

производство 1 кг произвольно заданного материала коллективом наноустройств за 2—3 часа;

промышленные системы, способные удваивать объемы производства каждые 10 000 секунд;

создание компактных нанокомпьютеров производительностью 10 000 Тфлопс на 1 Вт потребляемой мощности.

Переход к производству ОЗУ на базе углеродных трубок ожидается уже в следующем году. Компании Nanosys и In-Q-Tel (последняя финансируется ЦРУ и занимается рискованными технологическими проектами) взялись за разработку неорганических полупроводниковых наноструктур. Такие наноструктуры, развиваемые на основе теории квантовых точек, позволят создать квантовые лазеры, одноэлектронные транзисторы и т. д.

В ближайшие же пару десятилетий нанотехнологи обещают выпустить на массовый рынок устройства хранения одного терабайта информации (содержимое библиотеки Конгресса США) на носителе размером 1 см3 и процессоры производительностью одна тысяча терафлопс. Такие ресурсы будут востребованы в системах интеллектуальной обработки сигналов, распознавания речи, организации высококачественной беспроводной связи и в различных военных приложениях. Ожидается также, что терафлопсные машины смогут в реальном времени предсказывать погоду. В середине второго десятилетия появятся первые молекулярные компьютеры, а вот квантовые вычислительные системы пока по-прежнему останутся в фазе исследований.

Существенно изменится структура рынка лекарств ссылка композит медицинский, объем которого только в США составляет 380 млрд. долл. В настоящее время доля фармакологических фирм, использующих нанотехнологии, равняется 1%, а вот через 10—15 лет их процент возрастет до 50%. Системы целевого клеточного воздействия появятся в продаже через 5—7 лет, а множество лекарств, полученных нанотехнологическим способом, находятся сегодня либо на этапе проектирования, либо на самых ранних стадиях клинических испытаний. Но уже через 3—5 лет суперкомпьютеры производительностью 1 петафлопс смоделируют работу белков и процесс проектирования новых лекарств существенно ускорится. А в 20-х годах будет отработана технология направленной эволюции белковых препаратов, которая позволит готовить лекарства точечного воздействия, не имеющие побочных эффектов.

Произойдут эволюционные изменения и в мировой энергетике. Сверхпрочная теплостойкая сталь, содержащая углеродные трубки, к 2005 г. существенно подешевеет и будет активно использоваться в оборудовании тепловых электростанций (ТЭС), благодаря чему оно сможет работать при более высоких температурах. В результате повысится КПД ТЭС и снизится уровень вредных выбросов. Хорошие теплоизолирующие свойства новых материалов с нанодобавками позволят автопроизводителям уже в 2010 г. наладить выпуск автомобилей, где электричество для питания всей бортовой электроники будет вырабатываться за счет утилизации вырабатываемого машиной тепла. А на базе новых полимеров начнется массовый выпуск компактных и эффективных солнечных батарей.


Литература

1 Ichinose N. et al. Superfine Particle Technology. London, 1992.

2 Brinker C.J., Scherer G.W. Sol-Gel Science. Boston, 1990.

3 Mark J.E. Frontiers of Macromolecular Science / Eds T.Saegusa, T.Higashimura, A.Abe. Oxford, 1989.

4 Novak B.M., Davis C. // Macromolecules. 1991. V.24. P.2481—2483.

5 Kelly P., Akelah A., Moet A. // J. Mater. Sci. 1994. V.29. P.2274—2280.

6 Vossmeyer T., Katsikas L., Giersig M., Popovic I. // J. Chem. Phys. 1994. V.98. P.7665—7673.

7 Barthelemy A., Fert A., Morel R., Steren L. // Phys. World. 1994. V.7. P.34—38; Satterfield C.N. Geterogeneous Catalysis in Industrial Practice. 2nd ed. N.Y., 1991.

8 Klabunde K.J., Habdas J., Cardenas-Trivino G. // Chem. Mater. 1991. B.5. S.947—952.

9 Heilmann A., Hamann C. // Progr. Colloid Polym. Sci. 1991. V.85. P.102—112.

10 Gerasimov G.N., Sochilin V.A., Chvalun S.N. et al. // Macromol. Chem. Phys. 1996. V.197. P.1387—1393; Hopf H., Gerasimov G.N., Chvalun S.N. et al. // Adv. Mater. 1997. V.3. P.197—201; Nikolaeva E.V., Ozerin S.A., Grigoriev E.I. et al. // Mat. Sci. Eng. C-Bio. 1999. V.8—9. P.215—223.

11 Герасимов Г.Н., Григорьев Е.И., Григорьев А.Е. и др. // Хим. физика. 1998. Т.17. С.168—173.

12 Mahler W. // Inorg. Chem. 1988. V.27. P.435—436.

13 Rempp P., Merrill E.W. Polymer Synthesis (2nd ed.). N.Y., 1991; Volkov A.V., Karachevtsev I.V., Moskvina M.A. et al. // J. Inorg. and Organometallic Polymers. 1995. V.5. P.295—305.

14 Hajduk D.A., Harper P.E., Gruner S.M. et al. // Macromolecules. 1995. V.28. P.2570—2573; Matsen M.W., Bates F.S. // Ibid. 1996. V.29. P.7641—7644.

15 Moller M., Lentz D.W. // Macromol. Chem. 1989. V.190. P.1153—1168.

16 Chan Y.N. C., Schrock R.R., Cohen R.E. // J. Am. Chem. Soc. 1992. V.114. P.7295—7296.

17 Helmimiak T.E., Arnold F.E., Benner C.L. // ACS Polym. Prepr. 1975. V.16. P.659—662.

18 Hwang W.F., Wiff D.R., Verschoore C. // Polym. Eng. Sci. 1983. V.23. P.789—791.

19 Ding H., Harris F.W. // Pure and Appl. Chem. 1997. V.67. P.1995—2004.

20 Неверов В.М., Чвалун С.Н., Blackwell J. и др. // Высокомолекуляр. соединения. А. 2000. Т.42. С.450—461.

21 Israelashvili J.N. Intermolecular and Surface Forces. N.Y., 1992; Schneider H.J., Durr H. Frontiers in Supramolecular Organic Chemistry and Photochemistry. N.Y., 1991; Chvalun S.N., Blackwell J., Cho J. // Polymer. 1998. V.39. P.4515—4522; Чвалун С.Н., Kwon Y. Blackwell J., Percec V. // Высокомолекуляр. соединения. А. 1996. Т.38. С.1978—1990.


Информация о работе «Новые материалы на основе полимерных нанокомпозитов»
Раздел: Химия
Количество знаков с пробелами: 31903
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
21805
0
12

... группой и поверхностью глины делают эти органоглины химически более стабильными, чем органоглины полученные по ионному механизму. Структура полимерных нанокомпозитов на основе монтморилонита Изучение распределения органоглины в полимерной матрице имеет большое значение, так как свойства получаемых композитов напрямую зависят от степени распределения органоглины. Согласно работам Джианелиса ...

Скачать
72115
9
2

... пород. 4.  возможность использования в рецептуре композита вторичных сырьевых материалов (отходов потребления полимерной химии и деревопереработки) без ухудшения качества композита. 5.  разработка двух технологических схем производства микрокомпозита (экструдер-режущее устройство-сушка-упаковка) и нанокомпозита (виброакустическая мельница – экструдер-режущее устройство). 5. Расчетно- ...

Скачать
58196
10
4

... химическое, макроструктурное модифицирование и одновременное обогащение бентопорошка, позволяют повысить сорбционные свойства и качество готовой продукции. 3.4 Разработка полимерных композиционных материалов на основе органоглин на основе бентонита месторождения «Герпегеж» Объектами исследований в данной части работы являются нанокомпозиты, полученные на основе органомодифицированных ...

Скачать
54009
2
9

... технологий, вместе взятых [[32]]. Сегодня объем мирового рынка нанотехнологической продукции измеряется в миллиардах долларов (пока этот рынок составляют главным образом новые материалы и порошки, улучшающие свойства материалов), а к 2015 году, по прогнозам западных специалистов, он превысит $1 трлн [[33]]. В недалеком будущем экономическое, военное, социальное и политическое положение развитых ...

0 комментариев


Наверх