1.3.4. Оптическая термометрия.

При наличии теплового движения молекул вещества, т.е. практически всегда, тело является источником электромагнитного излучения. Интенсивность этого излучения и его спектральный состав связаны с температурой. Для идеализированного абсолютного чёрного тела энергия, излучаемая с единицы поверхности в единицу времени определяется законом Стефана-Больцмана: Rэ=sT4 , где s=5.67∙10-8 Вт/м2К4 - постоянная величина, Т – абсолютная температура. Основанные на этом законе термометры носят название радиационных пирометров (рис.7). Строго рассчитанная доля излучения исследуемого тела выделяется входной линзой прибора и регистрируется чувствительным колориметром. Затем производится перерасчет к полному излучению со всей поверхности исследуемого тела и вносится поправка на степень «серости» тела.

Измерить величину R технически очень трудно, поэтому такие термометры не дают точных измерений.

Более распространены яркостные пирометры, в которых яркость[1] свечения исследуемого тела сравнивается с яркостью тела, температура которого известна. Схематически устройство яркостного пирометра показывает рис.8. Обычно в качестве тела сравнения берут вольфрамовую нить Н специальной электролампы, питаемой от стабильного источника тока E. Меняя ток этой лампы при помощи реостата R можно выровнять её яркость с яркостью исследуемого тела, в этом состоянии температуры тел одинаковы. Температуру нити лампы сравнения определяют по току миллиамперметра А, при этом шкалу миллиамперметра заранее градуируют непосредственно в градусах.

Пирометр представляет собой зрительную трубу Т, позволяющую рассматривать удаленные объекты. Нить лампы сравнения устанавливается в фокальной плоскости окуляра. В эту же плоскость вращением объектива проецируется изображение объекта. При правильной настройке оптической части нить лампы сравнения наблюдается на фоне объекта.

Нить лампы сравнения нельзя нагревать выше определенной температуры (14000С), поэтому для расширения предела измеряемых температур в оптическую схему пирометра включают светофильтры, ослабляющие яркость исследуемого тела с точно известной кратностью.

Яркостный пирометр показывает действительную температуру лишь тогда, когда тело и нить лампы одинаково близки по оптическим свойствам к абсолютно черному телу. Дело в том, что показатель этой близости – «коэффициент серости» - зависит от температуры; чем она выше, тем он ближе к единице. Поэтому для получения истинного значения температуры в полученный результат вводят поправку, зависящую от материала излучающего тела и от его температуры.

В отдельных случаях применяют так называемый цветовой пирометр, когда температуру определяют на основании закона Вина (λмах=b/T) , связывающего температуру излучающего тела с длиной волны, на которую приходится максимум его излучательной способности. Цветовой пирометр состоит из прибора, разлагающий излучение нагретого тела в спектр, и фотоэлектрической приставки, измеряющей распределение интенсивности в этом спектре.

Оптические пирометры имеют невысокую точность, но позволяют производить дистанционные измерения, что во многих процессах металлургии, в химии, физике и астрономии очень актуально.

2. Практическая часть.

Задание 1. Температурные шкалы. Произведите перерасчет температуры и запишите результаты в свободной форме.

а) Какова температура человеческого тела в шкалах Цельсия, Кельвина и Фаренгейта?

б) Сколько градусов Цельсия в одном градусе Фаренгейта?

в) Переведите 500F в градусы Кельвина.

 

Задание 2. Градуировка термометра сопротивления.

 Термометр сопротивления изготовлен из тонкой медной проволоки, намотанной на бумажный каркас, помещенный в защитный стеклянный футляр (в пробирку). В холодном состоянии сопротивление провода близко к 80 Ом.

Для градуировки термометра сопротивления соберите установку, показанную на рис.8. Жидкостный термометр (ЖТ) вставьте в отверстие в крышке пробирки. Пробирку, укрепленную в лапке штатива, опустите сосуд. Величина сопротивления медной проволоки термометра в данной работе измеряется при помощи мультиметра М. Подключите термометр сопротивления к входу мультиметра. Поставьте переключатель диапазона в положение 200 Ом. На шкале прибора высветится величина сопротивления.

Влейте в стакан горячую воду и по мере нагревания термометрического тела через каждые 50 измеряйте и записывайте величину сопротивления. Результаты занесите в таблицу 1. Чтобы исключить ошибку на тепловую инертность термометрического тела измерения следует повторить при охлаждении жидкости. Измерения проделайте по тем же температурным точкам, что и при нагревании. После этого усредните значения сопротивлений и заполните всю таблицу 1.

По полученным данным постройте градуировочный график данного термометра сопротивления, откладывая по горизонтальной оси температуру, а по вертикальной – величину сопротивления. Если экспериментальные точки все-таки имеют некоторый разброс, следует «не глаза» сгладить линию. Такой градуировочный график позволяет в дальнейшем измерять температуру среды, в которую может быть помещен этот термометр сопротивления.

По градуировочному графику определите температурный коэффициент сопротивления меди:  ( град-1).

Значения t1и t2 и соответствующие им значения сопротивлений R1 и R2 выбираются по графику произвольно.

Задание 3. Градуировка термистора.

Термистор – это полупроводниковый элемент, сопротивление которого зависит от температуры. В работе используется термистор марки ММТ – 4. В холодном состоянии его сопротивление приблизительно равно 1 кОм. Градуировка выполняется на установке, описанной в задании 1.

По полученным экспериментальным точкам (таб. 2 отчета) постройте градуировочную кривую. Следует учитывать, что зависимость сопротивления термистора от температуры имеет нелинейный характер и соединять точки следует не прямой линией, а плавной кривой. Рассчитайте величину температурного коэффициента сопротивления термистора. Сравните чувствительность термометров сопротивления по результатам заданий 2 и 3.

Задание 4. Изготовление и градуировка термопары.

В работе используется два материала – медь и константан. Последний снят с обмотки реостата, где он применяется в связи с низкой зависимостью его сопротивления от температуры. Зачистите от окислов концы проводов и плотно соедините их путем скручивания и одинарная термопара готова. Свободные концы соедините с чувствительным гальванометром, поставленным в позицию 1 мкВ. Место скрутки термопары закрепите скотчем на колбе жидкостного термометра и проградуируйте по методике предыдущих упражнений. Результаты занесите в таблицу 3. Постройте график Е(Т) и рассчитайте величину удельной термоЭДС этой термопары. Е=aТ. a=ΔЕ/ΔТ. [2]

 Задание 5. Изготовление и градуировка дифференциальной термопары.

По схеме, ясной из рисунка 5, соберите методом скрутки дифференциальную термопару. Медные провода лучше сделать наружными. Поместив один спай в сосуд со снегом, а второй, прикрепленный к жидкостному термометру, в нагреватель, произведите градуировку. Заполните таблицу 4 и постройте график зависимости Е(Т).

Поскольку «холодный» спай имеет температуру 0о С, то горячий при такой градуировке показывает температуру именно по шкале Цельсия. Прижав «горячий» спай к мочке своего уха, измерьте её температуру.

 

 

Дополнительное задание. Изготовление термобатареи.

Придумайте и рассчитай схему термоэлектрогенератора, который при разности температур горячих и холодных спаев 1000 вырабатывает ЭДС величиной 1 мВ.

 


ОТЧЕТ

 

…………………………………………………………………………….

о выполнении лабораторной работы № 2

«ТЕРМОМЕТРИЯ»

Задание 1. Температурные шкалы. Произведите перерасчет температуры и запишите результаты в свободной форме.

а) Какова температура человеческого тела в шкалах Цельсия, Кельвина и Фаренгейта?

б) Сколько градусов Цельсия в одном градусе Фаренгейта?

в) Переведите 500F в градусы Кельвина.

 

Задание 2. Градуировка термометра сопротивления.

Таблица 1.

 

toC

R, Ом

 

toC

R, Ом

 

Внимание!!! Графики выполняются попарно (2 с 3 и 4 с 5 заданиями)

на двух листах миллиметровой бумаги размером 9х9 см и прилагаются к отчету

Термический коэффициент сопротивления, рассчитанный по графику

 

R1= ; R2= ; t1= ; t2= ; α= ± град-1.

(Соответствует ли эта величина табличному значению для меди?)

 

Задание 3. Градуировка термистора.

Таблица 2.

 

toC

R, Ом

 

toC

R, Ом

Термический коэффициент сопротивления, рассчитанный по графику

R1= ; R2= ; t1= ; t2= ; α= ± град-1.

 Сравните полученный результат с термометром сопротивления.

Задание 4. Изготовление и градуировка термопары.

Таблица 3.

 

toC

U, мкВ

Рассчитанное по графику значение удельной термоэЭДС исследуемой термопары:

a=ΔЕ/ΔТ. ΔЕ = мкВ; ΔТ = град. a= град1

(Соответствует ли эта величина табличным значением для пары меди-константан?)

 

Задание 5. Изготовление и градуировка дифференциальной термопары.

Таблица 4

 

toC

U, мкВ

Измерение температуры тела:

1. мочка уха: показания гальванометра - мкВ; температура по графику  Со.

2. пальцы рук: показания гальванометра - мкВ; температура по графику  Со

 Дополнительное задание.

1.  Схема термоэлектрогенератора:

2.  Расчет размеров и параметров:

3.  Предложения по практическому применению.


[1] Яркость – физическая величина, применяемая для оценки энергии, излучаемой единицей поверхности тела в единицу времени в заданном направлении

[2] Из-за низкой чувствительности термопары градуировку следует проводить в более широком температурном интервале. Поэтому предпочтительно использовать электронагреватель, а в качестве эталонного термометра термопару заводского изготовления, входящую в комплект мультиметра.


Информация о работе «Комплект лабораторного оборудования для углубленного изучения физики»
Раздел: Физика
Количество знаков с пробелами: 24282
Количество таблиц: 4
Количество изображений: 2

Похожие работы

Скачать
71323
3
0

... пользователя: VI—XI классы. Платформа: Windows. Носитель: компакт-диск. Варианты построения уроков с использованием электронного учебника   1.         Электронный учебник используется при изучении нового материала и его закреплении (20 мин. работы за компьютером). Учащихся сначала опрашивают по традиционной методике или с помощью печатных текстов. При переходе к изучению нового материала ...

Скачать
86032
6
2

... должно быть кратким, свободным, учащиеся включаются в дискуссию по обсуждению проектов. Как правило, на данном этапе следует обратить внимание на перспективы работы над данным проектом. ГЛАВА 2 ЭЛЕКТИВНЫЙ КУРС ПО ФИЗИКЕ «АЛЬТЕРНАТИВНАЯ ЭЛЕКТРОЭНЕРГЕТИКА»   Пояснительная записка Образовательная область: физика Возрастная группа: 9 класс Вид элективного курса: предпрофильный. Тип ...

Скачать
224643
3
7

... , прохождение шаблона до необходимой глубины. Переход на другие горизонты и приобщение пластов. Уменьшение потерь нефти. Ремонты скважин, оборудованных пакерами. Герметичность пакера, увеличение дебета нефти. Увеличение, сокращение объемов закачки воды. Зарезка и бурение второго ствола. Выполнение запланированного объема работ. Ремонт нагнетательных скважин. Герметичность колонны и ...

Скачать
93986
7
15

... школы. Мебель кабинета физики. Особенности оснащения и оборудования кабинета физики сельской школы. Рабочее место ученика и учителя в кабинете физики сельской школы. Кабинет физики в условиях разноуровневого обучения. Системы освещения и затемнения кабинета. Экскурсия в кабинет физики городской школы. 4. Работа заведующего кабинетом физики (5ч.) Права и обязанности заведующего кабинетом физики. ...

0 комментариев


Наверх