2.3 Методы контроля загрязнений почвы
Выявление загрязнения почв тяжелыми металлами производят прямыми методами отбора почвенных проб на изучаемых территориях и их химического анализа на содержание тяжелых металлов. Эффективно также использовать для этих целей ряд косвенных методов: визуальная оценка состояния фитогенезов, анализ распространения и поведения видов – индикаторов среди растений, беспозвоночных и микроорганизмов [22, с. 32].
Для выявления пространственных закономерностей проявления загрязнения почв используют сравнительно-географический метод, методы картирования структурных компонентов биогеоценозов, в том числе и почв. Такие карты не только регистрируют уровень загрязнения почв тяжелыми металлами и соответствующие изменения в напочвенном покрове, но позволяют прогнозировать изменение состояния природной среды.
Рекомендовано отбирать образцы почв и растительности по радиусу от источника загрязнения с учетом господствующих ветров по маршруту протяженностью 25-30 км.
Расстояние от источника загрязнения для выявления ореола загрязнения может колебаться в значительных пределах и в зависимости от интенсивности загрязнения и силы господствующих ветров может изменяться от сотен метров до десятков километров.
В США на борту ресурсного спутника ЭРТС-1 были установлены датчики для выяснения степени повреждения веймутовой сосны сернистым газом и почвы цинком. Источником загрязнения был цинкоплавильный завод, действующий с дневным выбросом цинка в атмосферу 6,3-9 тонн. Зарегистрирована концентрация цинка, равная 80 тыс. мкг/г в поверхностном слое почвы в радиусе 800 м от завода. Растительность вокруг завода погибла в радиусе 468 гектаров. Сложность использования дистанционного метода заключается в интеграции материалов, в необходимости при расшифровке полученных сведений серии контрольных тестов в районах конкретного загрязнения.
Выявление уровня токсичности тяжелых металлов непросто. Для почв с разными механическими составами и содержанием органического вещества этот уровень будет неодинаков. В настоящее время сотрудниками институтов гигиены предприняты попытки определить ПДК металлов в почве. В качестве тест-растений рекомендованы ячмень, овес и картофель. Токсичным уровень считался тогда, когда происходит снижение урожайности на 5-10%. Предложены ПДК для ртути – 25 мг/кг, мышьяка – 12-15, кадмия – 20 мг/кг. Установлены некоторые губительные концентрации ряда тяжелых металлов в растениях (г/млн.): свинец – 10, ртуть – 0,04, хром – 2, кадмий – 3, цинк и марганец – 300, медь – 150, кобальт – 5, молибден и никель – 3, ванадий – 2 [22, с. 36].
Защита почв от загрязнения тяжелыми металлами базируется на совершенствовании производства. Например, на производство 1 т хлора при одной технологии расходуют 45 кг ртути, а при другой – 14-18 кг. В перспективе считают возможным снизить эту величину до 0,1 кг.
Новая стратегия охраны почв от загрязнения тяжелыми металлами заключена также в создании замкнутых технологических систем, в организации безотходных производств.
Отходы химической и машиностроительной промышленности также представляют собой ценное вторичное сырье. Так отходы машиностроительных предприятий являются ценным сырьем для сельского хозяйства из-за фосфора.
В настоящее время поставлена задача обязательной проверки всех возможностей утилизации каждого вида отходов, прежде их захоронения или уничтожения.
При атмосферном загрязнении почв тяжелыми металлами, когда они концентрируются в больших количествах, но в самых верхних сантиметрах почвы, возможно удаление этого слоя почвы и его захоронение.
В последнее время рекомендован ряд химических веществ, которые способны инактивировать тяжелые металлы в почве или понизить их токсичность. В ФРГ предложено применение ионообменных смол, образующих хелатные соединения с тяжелыми металлами. Их применяют в кислотной и солевой формах или в смеси той и другой форм.
В Японии, Франции, ФРГ и Великобритании одна из японских фирм запатентовала способ фиксирования тяжелых металлов меркапто-8-триазином. При использовании этого препарата кадмий, свинец, медь, ртуть и никель прочно фиксируются в почве в виде нерастворимой и недоступной для растений форм.
Известкование почв уменьшает кислотность удобрений и растворимость свинца, кадмия, мышьяка и цинка. Поглощение их растениями резко уменьшается. Кобальт, никель, медь и марганец в нейтральной или слабощелочной среде также не оказывают токсического действия на растения.
Органические удобрения, подобно органическому веществу почв, адсорбируют и удерживают в поглощенном состоянии большинство тяжелых металлов. Внесение органических удобрений в высоких дозах, использование зеленых удобрений, птичьего помета, муки из рисовой соломы снижают содержание кадмия и фтора в растениях, а также токсичность хрома и других тяжелых металлов.
Оптимизация минерального питания растений путем регулирования состава и доз удобрений также снижает токсическое действие отдельных элементов. В Англии в почвах, зараженных свинцом, мышьяком и медью, задержка появления всходов снималась при внесении минеральных азотных удобрений. Внесение повышенных доз фосфора уменьшало токсичное действие свинца, меди, цинка и кадмия. При щелочной реакции среды на заливных рисовых полях внесение фосфорных удобрений вело к образованию нерастворимого и труднодоступного для растений фосфата кадмия.
Однако, известно, что уровень токсичности тяжелых металлов неодинаков для разных видов растений. Поэтому снятие токсичности тяжелых металлов оптимизацией минерального питания должно быть дифференцировано не только с учетом почвенных условий, но и вида и сорта растений.
Среди естественных растений и сельскохозяйственных культур выявлен ряд видов и сортов, устойчивых к загрязнению тяжелыми металлами. К ним относятся хлопчатник, свекла и некоторые бобовые. Совокупность предохранительных мер и мер по ликвидации загрязнения почв тяжелыми металлами дает возможность защитить почвы и растения от токсического их воздействия.
Одно из основных условий охраны почв от загрязнения биоцидами – создание и применение менее токсичных и менее стойких соединений и внесение их в почву и уменьшение доз их внесения в почву. Существует несколько способов, позволяющих уменьшить дозу биоцидов без снижения эффективности их возделывания [16, с. 268]:
· сочетание применения пестицидов с другими приемами. Интегрированный метод борьбы с вредителями – агротехнический, биологический, химический и т.д. При этом ставится задача не уничтожить целый вид целиком, а надежно защитить культуру. Украинские ученые применяют микробиопрепарат в совокупности с небольшими дозами пестицидов, который ослабляет организм вредителя и делают его более восприимчивым к заболеваниям;
· применение перспективных форм пестицидов. Использование новых форм пестицидов позволяет существенно снизить норму расхода действующего вещества и свести к минимуму нежелательные последствия, в том числе и загрязнение почв;
· чередование применения токсикантов с неодинаковым механизмом действия. Такой способ внесения химических средств борьбы предотвращает появление устойчивых форм вредителей. Для большинства культур рекомендуют 2-3 препарата с неодинаковым спектром действия.
При обработке почвы пестицидами лишь небольшая часть их достигает мест приложения токсического действия растений и животных. Остальная часть накапливается на поверхности почв. Степень загрязнения почв зависит от многих причин и прежде всего от стойкости самого биоцида. Под стойкостью биоцида понимают способность токсиканта противостоять разлагающему действию физических, химических и биологических процессов. Главный критерий детоксиканта – полный распад токсиканта на нетоксичные компоненты.
Биодиагностика техногенного загрязнения почв. Высокая чувствительность почвы к любым негативным и позитивным воздействиям позволяет использовать биологические показатели в качестве параметров биомониторинга [10, с. 37].
Биологическая активность — производная совокупности абиотических, биотических и антропогенных факторов почвообразования. В почве зоо- и микробоценозы объединяются в единую систему с продуктами их жизнедеятельности— внеклеточными и внутриклеточными ферментами, а также с абиотическими компонентами почвы.
Основные положения предлагаемой методологии следующие:
· одновременное изучение показателей биологической активности почвы;
· выявление наиболее информативных эколого-биологических показателей и возможного интегрального показателя экологического состояния почвы;
· учет пространственной и временной вариабельности биологических свойств почвы;
· использование сравнительно-географического и профильно-генетического подходов для оценки состояния почвы.
Исследование состояния деградированных почв будет наиболее полным в том случае, если будут определены:
ü прямые показатели загрязнения тяжелыми металлами и нефтепродуктами (валовое содержание тяжелых металлов, содержание их подвижных форм, содержание нефтепродуктов, мощность загрязненного слоя);
ü показатели устойчивости к загрязнению тяжелыми металлами и нефтепродуктами (емкость катионного обмена, степень насыщенности основаниями, содержание гумуса, реакция среды);
ü Биологические показатели изменения свойств почвы под воздействием металлов-загрязнителей и нефтепродуктов (активность почвенных ферментов, например инвертазы, каталазы, интенсивность выделения углекислого газа, целлюлозоразлагающая способность, общая численность почвенных микроорганизмов, структура микробоценоза и др.).
Для практических целей определение всего комплекса показателей весьма трудоемко и требует дорогостоящего оборудования. Более целесообразно определять показатели, объективно отражающие уровень и последствия загрязнения.
Общие закономерности изменения свойств почвы по мере возрастания содержания загрязняющих веществ могут быть сформулированы только на основе экспериментальных материалов. В результате многолетних исследований установлены наиболее информативные показатели биологической активности почвы для биодиагностики и биомониторинга. К ним относятся, прежде всего, биохимические показатели, поскольку они лучше коррелируют с уровнем загрязнения и имеют меньшее варьирование в пространстве и во времени по сравнению с микробиологическими. Из изученных рекомендуется использовать ферментативную активность—активность каталазы, которая является одним из показателей стабилизации почвенных условий. Ее изменение связано с загрязненностью и буферной способностью почвы (рис. 1).
При слабом загрязнении происходит стимуляция окислительно-восстановительных процессов.
В проведенных исследованиях активность каталазы была максимальной при коэффициенте Zc концентрация загрязняющих веществ, равном 2 – 8, при Zc = 32 и более она практически не проявлялась.
При коэффициенте Zc равном 2 – 8, уровень загрязнения является допустимым, при 8 – 32 – средним, при 32 – 64 – высоким, при Zc > 64 – очень высоким.
Из всех изученных ферментов каталаза наиболее чувствительна, поэтому ее активность может быть использована в качестве критерия оценки восстановления функций почв.
Было установлено, что наиболее информативным показателем экологического состояния техногенно загрязненных почв является интегральный показатель биологического состояния (ИПБС). При расчете ИПБС максимальное значение каждого показателя в выборке принимается за 100 % и по отношению к нему в процентах выражается значение этого же показателя в других пробах, то есть относительный показатель
Б1 = Б / Бmax ´ 100%,
где Б – значение показателя в пробе; Бmax – максимальное значение показателя.
Затем определяется среднее значение показателя
Бср = (Б1 + Б2 + Б3 + … + Бn) / n,
где n – число показателей.
Интегральный показатель биологической активности рассчитывается по формуле
ИПБС = (Бср / Бср max)´ 100%,
При диагностике за 100% принимается значение каждого показателя в незагрязненной почве.
Интегральный показатель биологического состояния почвы для всех уровней загрязнения находится в прямой зависимости от содержания в ней тяжелых металлов (рис. 2).
Влияние степени загрязнения на биологические процессы в почве целесообразно определять по отклонению активности внеклеточных биологических процессов от контроля согласно экотоксикологическим нормативам: <10% - мало опасный, 25 – 50 – опасный и > 50% - очень опасный уровень влияния.
Различные типы почв при одинаковом характере и степени загрязнения проявляют различную устойчивость. Для серой лесной почвы средний уровень загрязнения уже очень опасен, в этом случае восстановление биоценотических функций затруднено или практически невозможно. В черноземе выщелоченном снижение ИПБС на 50% происходит только при высоком уровне загрязнения.
Результаты биомониторинга техногенного загрязненных почв могут широко применяться при оценке воздействия на окружающую среду, экологическом нормировании загрязнения почв, прогнозировании экологических последствий какой-либо хозяйственной деятельности на данной территории, проведение экологической экспертизы, аудита и сертификации предприятий.
Помимо вышеперечисленных методов контроля загрязнений почвы следует сказать и о социально-гигиеническом мониторинге почвы.
Санитарно-эпидемиологическое состояние почвы существенным образом влияет на здоровье населения, поэтому должно учитываться при планировании расселения в пределах городской территории. Кроме того, загрязненные почвы могут оказывать существенное отрицательное воздействие на качество растительности, здоровье животных. Загрязнение почв снижает их потребительскую стоимость и поэтому должно учитывать при продаже земли [8].
Сказанное выше делает необходимым создание системы учета качества почвы посредством мониторинга. В настоящее время существует социально-гигиенический мониторинг, который определяется как государственная система наблюдения, анализа, оценки и прогноза состояния здоровья населения и среды обитания человека, а также определения причинно-следственных связей между состоянием здоровья населения и воздействием факторов среды обитания человека. Однако он не дает возможность оценить снижение общей стоимости земель.
Мониторинг санитарно-эпидемиологического состояния почв должен, в отличие от социально-гигиенического мониторинга, осуществляться не только в целях обеспечения санитарно-эпидемиологического благополучия населения в текущее время, но и создавать условия для правильного формирования инвестиционной политики в направлении улучшения качества этих почв для будущих поколений.
Санитарно-эпидемиологический мониторинг может проводиться на федеральном уровне, уровне субъектов Российской Федерации, уровне муниципальных образований. Однако для этого необходимо разработать и утвердить в установленном порядке нормативные правовые акты и методические материалы. Социально-гигиенический мониторинг почвы. По данным директора Института экологии и гигиены человека РАМН Юрия Рахманина, на территории России 1 300 предприятий ежедневно выбрасывают в атмосферу около 900 различных химических соединений.
Постановление Правительства РФ о социально-гигиеническом мониторинге вступило в силу в 2000 году. К настоящему времени на территории России проводится 15 видов социально-гигиенического мониторинга, целью которого является сбор информации, наблюдение и определение степени зависимости заболеваемости и смертности населения от состояния окружающей среды [13, с. 18].
В течение двух лет накоплены базы данных, которые позволяют специалистам, в том числе и медикам, анализировать уровень заболеваемости теми или иными болезнями в конкретном регионе страны. Так, с помощью мониторинга установлено, что в почве в районе Новосибирска накоплены цинк, хром, свинец, никель и медь в концентрациях, превышающих допустимые нормы. По мнению медиков, подобные загрязнения являются причиной заболеваний сердечно-сосудистой системы, опорно-двигательного аппарата, почек, которыми страдают многие жители Новосибирска.
Данные мониторинга позволяют также осуществлять мероприятия по первичной профилактике заболеваний у людей, разрабатывать программы по охране здоровья и окружающей среды [13, с.19].
Заключение
В результате проведенного исследования основных приоритетных веществ – загрязнителей почвы и методов контроля загрязнений почвы можно сделать следующие выводы.
Определено, что почвенный покров в конечном итоге принимает на себя давление потока промышленных и коммунальных выбросов и отходов, выполняя важнейшую роль буфера и детоксиканта. Почва аккумулирует тяжелые металлы, пестициды, углеводороды, детергенты и другие химические загрязняющие вещества, предупреждая тем самым их поступление в природные воды и очищая от них атмосферный воздух.
В ходе исследования были определены приоритетные вещества – загрязнители почвы. К ним относятся: мышьяк, кадмий, ртуть, свинец, селен, цинк, фтор, бензапилен, бор, кобальт, никель, молибден, медь, сурьма, хром и пр. То есть данные вещества относятся к разряду тяжелых металлов. Источники попадания данных загрязняющих веществ различны, но в основном это результаты выбросов промышленных предприятий.
В почве многие химические загрязняющие вещества претерпевают глубокие изменения. Углеводороды, пестициды, детергенты и другие соединения, с одной стороны, могут быть минерализованы или трансформированы в вещества, не оказывающие токсического воздействия на почву, микроорганизмы, растения, животных и человека. С другой стороны, эти же вещества или их производные, а также тяжелые металлы, фтор, оксиды азота и серы в первоначальном или преобразованном виде интенсивно связываются минеральными и органическими веществами почвы, что резко снижает их доступность растениям и соответственно общий уровень токсичности.
При характеристике почв очень трудно использовать широко применяемые при оценке воды, воздуха, продуктов питания и кормов понятия, например, ПДК тех или иных загрязняющих веществ. В числе главных причин – многообразие форм соединений любых элементов и веществ в почвах, от которых зависит доступность этих компонентов растениям и, следовательно, их возможный токсический эффект.
Поэтому при разработке принципов и организации почвенно-химического мониторинга приходится учитывать состав почвы, все ее составляющие, обладающие высокой сорбционной способностью, влияние условий на подвижность и доступность химических веществ растениям. Наиболее значительное влияние оказывает кислотность и щелочность почв, окислительно-восстановительный режим, содержание гумуса, легкорастворимые соли.
Список используемых источников
1. ГОСТ 27593-88 (СТ СЭВ 5298-85) "Почвы. Термины и определения".
2. ГОСТ 17.2.2.01-81 (СТ СЭВ 4470-84) "Охрана природы. Почвы. Номенклатура показателей санитарного состояния".
3. ГОСТ 17.4.3.01-83 (СТ СЭВ 3847-82) "Охрана природы. Почвы. Общие требования к отбору проб".
4. ГОСТ 17.4.3.03-85 "Охрана природы. Почвы. Общие требования к методам определения загрязняющих веществ".
5. ГОСТ 17.4.4.02-84 "Охрана природы. Почва. Методы отбора и подготовки проб почвы для химического, бактериологического и гельминтологического анализа".
6. ГОСТ 17.4.3.06-86 (СТ СЭВ 5101-85) "Охрана природы. Почвы. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ".
7. Методические указания по оценке степени опасности загрязнения почвы химическими веществами N 4266-87. Утв. МЗ СССР 13.03.87.
8. Приказ от 21.08.2007 № 246 «О мерах по организации проведению социально-гигиенического мониторинга» // СПС Гарант.
9. Грушко Я.М. Вредные органические соединения в промышленных выбросах в атмосферу. - Ленинград.: «Химия», 1991.
10. Девятова Т.А. Биодиагностика техногенного загрязнения почв // Экология и промышленность России. 2006. Январь. – С. 36 – 37.
11. Добровольский Г.В., Никитин Е.Д. Сохранение почв как незаменимого компонента биосферы. – М.: Наука, 2001.
12. Евреинова А.В., Колесников С.И. Влияние загрязнения черноземов тяжелыми металлами на рост и развитие растений // Материалы IV Международного симпозиума «Степи северной Евразии». Оренбург. 2006.
13. Завистяева Т.Ю. Значение почвы как одного из показателей состояния здоровья населения в системе социально-гигиенического мониторинга // Здоровье населения и среда обитания.– 2006 — № 1(154). — С. 18–22.
14. Защита атмосферы от промышленных загрязнений. /Под ред. С. Калверта и Г. Инглунда. – М.: «Металлургия», 1991.
15. Исмаилов Н. М. Нефтяное загрязнение и биологическая активность почв. – М.: Наука, 1991.
16. Колесников С.И., Попович А.А., Евреинова А.В. Сравнительная оценка действия различных химических элементов на экологическое состояние почвы // Материалы Международной научной конференции «Экология и биология почв: проблемы диагностики и индикации». Ростов-на-Дону. 2006. С. 264-268.
17. Кормилицын В.И. и др. Основы экологии – М.: ИНТЕРСТИЛЬ, 2007.
18. Миркин Б.М., Наумова Л.Г. Экология России. - М.: АО «МДС», 2006.
19. Методы оценки экологической опасности / Под ред. Хоружей Т.А. – М.: Экономика, 1991, 220 с.
20. Монин А. С.. Шишков Ю.А. Глобальные экологические проблемы. — М.: Знание, 2008.
21. Попович А.А., Евреинова А.В., Колесников С.И. Использование микробиологических показателей при мониторинге и диагностике загрязнения почв фтором и бором // Материалы Международной научной конференции «Современные проблемы загрязнения почв». Москва. 2004. С. 263-264.
22. Смирнова Н.В., Шведова А.В. Влияние свинца и кадмия на фитотоксичность почвы // Экология и промышленность России. 2005. Апрель. – С. 32 – 35.
... масштабах вряд ли целесообразно, так как поверхностно-активные вещества сами загрязняют среду и появится проблема их сбора и утилизации (Пиковский, 1993). 3.2 Основные подходы и роль биоремедиации в восстановлении нефтезагрязненных почв Существующие механические, термические и физико-химические методы очистки почв от нефтяных загрязнений дорогостоящи и эффективны только при определенном ...
... продолжают обустройство нефтяных месторождений по временным схемам - без пунктов сбора, подготовки и транспорта нефтяного газа. На базе Пермского межотраслевого научно-исследовательского института экологии топливно-энергетического комплекса сформирован специализированный Центр по борьбе с разливами нефти, создаются подобные службы и на нефтегазовых предприятиях. Но говорить о развитой система ...
... научных и прикладных работах авторы по-разному трактуют значение понятия "тяжёлые металлы". В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк). Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. ...
... зонах района - скверах и участках домов поселка “Сокол”, а наихудшая - вблизи железной дороги и развилки Ленинградского и Волоколамского шоссе. Глава 3 Фитотоксичность городских почв. 3.1. Состояние почв города Дзержинского Город Дзержинский находится на Юго- Востоке от города Москвы . Юго –Восточный округ один из самых неблагополучных в ...
0 комментариев