Содержание
1. Введение
2. Анализ задания
2.1 Виды сканеров
2.1.1 Ручные сканеры
2.1.2 Листопротяжные сканеры
2.1.3 Планшетные сканеры
2.1.4 Барабанные сканеры
2.2 Параметры сканеров
2.2.1 Разрешение
2.2.2 Разрядность оцифровки
2.2.3 Глубина цвета
2.2.4 Тени и света
2.2.5 Оптическая плотность
2.2.6 Динамический диапазон
2.2.7 Цветовой шум
2.3 Интерфейсы
2.4 Программное обеспечение
3. Технология
3.1 Общие положения
3.2 Считывание
3.3 Технология UMAX Bit Enhancement Technology
3.4 Особенности сканирования графики и распознавание текстов
4. Конструкция сканеров
5. Обслуживание сканеров
6. Проблемы при работе со сканерами
6.1 Тестирование сканеров
6.2 Проблема ресурсов
6.3 Неисправности сканеров
7. Примеры
7.1 EPSON Perfection 3200 Photo
7.2 Nikon SUPER COOLSCAN 4000 ED
Заключение
Список литературы
1. Введение
Львиную долю информации об окружающем мире человек получает благодаря своему зрению. При общении с компьютером, который до сих пор не научился толком понимать устную речь, визуализация данных играет еще большую роль. Да, хранятся они в «бестелесной» и совершенно не наглядной цифровой форме. А при вводе и выводе, т.е. при диалоге с пользователем, в подавляющем большинстве случаев информация представлена изображениями. Существуют разные способы занесения данных в память компьютера. Набор текста, рисование графических объектов - работа ручная и трудоемкая. Значительно ускорить и облегчить ее помогают устройства, предназначенные для считывания изображений и преобразования их в цифровую форму.
Почти каждый пользователь компьютера постоянно сталкивается с проблемой преобразования документов из бумажной формы в электронную. Однако процедура ввода информации вручную отнимает огромное количество времени и чревата ошибками. Кроме того, вручную можно вводить только тексты, но не изображения. Выходом из положения является сканер, позволяющий вводить в компьютер как изображения, так и текстовые документы. Сканеры считывают с бумаги, пленки или иных твердых носителей «аналоговые» тексты или изображения и преобразуют их в цифровой формат. Они служат везде: в крупных конторах, где обрабатываются огромные архивы документов, в издательствах и проектно-конструкторских организациях, а также в небольших фирмах и домашних офисах. Насколько широка сфера применения сканеров, настолько много их разновидностей. Цена сканера может составлять от нескольких десятков до десятков тысяч долларов.
История этого устройства началась в 1855 году, когда итальянский физик Казелли создал прибор, названный «пантелеграфом», сканирующий изображение, нарисованное токопроводящими чернилами. В начале нашего века немецким физиком Корном был создан фототелеграф, уже принципиально ничем принципиально не отличающийся от современных барабанных сканеров, а с развитием полупроводниковых технологий стало возможно объединить несколько фотоприемников в одну линейку. У современных сканеров используются два типа приемных элементов - CCD (Charge-Coupled Device, прибор с зарядовой связью - ПЗС) или более дешевые и пока менее качественные элементы типа CIS (Contact Image Sensor) - непосредственно воспринимающие световой поток от оригинала и тем самым не требующие сложной оптической системы.
2.1.1 Ручные сканеры
Ручные сканеры - обычные или самодвижущиеся - обрабатывают полосы документа шириной около 10 см и представляют интерес прежде всего для владельцев мобильных ПК. Они медлительны, имеют низкие оптические разрешения (обычно 100 точек на дюйм) и часто сканируют изображения с перекосом. Это осложняет работу программ распознавания, которым к тому же приходится иметь дело со страницами формата А4, склеенными из нескольких фрагментов. Но зато они недороги (60-120 долларов) и компактны. Широкий ассортимент ручных моделей предлагают компании Genius и Mustek.
2.1.2 Листопротяжные сканерыВ листопротяжном сканере, как и в факсимильном аппарате (комплексе механических, светооптических и электронных устройств для передачи изображений неподвижных плоских объектов (оригиналов) по каналам электросвязи или/и для приема таких изображений с воспроизведением объекта в виде его копии (факсимиле)), страницы документа при считывании пропускаются через специальную щель с помощью направляющих роликов (последние зачастую становятся причиной перекоса изображения при вводе). Таким образом, сканеры этого типа непригодны для ввода данных непосредственно из журналов или книг. Отдельно предлагаются такие полезные аксессуары листопротяжных сканеров, как устройства автоматической подачи документов (ADF). В целом возможности применения листопротяжных сканеров ограниченны, поэтому их доля на массовом рынке постепенно снижается. Тем не менее, на корпоративном рынке документных сканеров (Fujitsu, Kodak и т. д.) листопротяжные устройства стоимостью 1,3-60 тыс. долларов с быстродействием 10-100 с./мин. представлены достаточно широко.
2.1.3 Планшетные сканерыПланшетные сканеры весьма универсальны. Они напоминают верхнюю часть копировального аппарата: оригинал - либо бумажный документ, либо плоский предмет - кладут на специальное стекло, под которым перемещается каретка с оптикой и аналого-цифровым преобразователем (однако существуют сканеры, в которых перемещается стекло с оригиналом, а оптика и АЦП остаются неподвижными, чем достигается более высокое качество сканирования). Планшетные сканеры стоимостью $200-1100 пригодны как для качественного сканирования цветных изображений, так и для более или менее быстрого ввода текстовых документов. Помимо сканеров массового спроса выпускаются планшетные аппараты для полиграфии (например изделия AGFA) ценой в несколько тысяч долларов и дорогие скоростные офисные модели для формата А4. Обычно планшетный сканер считывает оригинал, освещая его снизу, с позиции преобразователя. Чтобы сканировать четкое изображение с пленки или диапозитива, нужно обеспечить подсветку оригиналов как бы сзади. Для этого и служит слайдовая приставка, представляющая собой лампу, которая перемещается синхронно со сканирующей кареткой и имеет определенную цветовую температуру.
2.1.4 Барабанные сканерыБарабанные сканеры, по светочувствительности значительно превосходящие потребительские планшетные устройства, применяются исключительно в полиграфии, где требуется высококачественное воспроизведение профессиональных фотоснимков. Разрешение таких сканеров обычно составляет 8000-11000 точек на дюйм и более, а цена достигает 150 тысяч долларов. В барабанных сканерах оригиналы размещаются на внутренней или внешней (в зависимости от модели) стороне прозрачного цилиндра, который называется барабаном. Чем больше барабан, тем больше площадь его поверхности, на которую монтируется оригинал, и, соответственно, тем больше максимальная область сканирования. После монтажа оригинала барабан приводится в движение. За один его оборот считывается одна линия пикселей, так что процесс сканирования очень напоминает работу токарно-винторезного станка. Проходящий через слайд (или отраженный от непрозрачного оригинала) узкий луч света, который создается мощным лазером, с помощью системы зеркал попадает на ФЭУ, где оцифровывается.
2.2 Параметры сканеров 2.2.1 РазрешениеСамой важной характеристикой сканера или цифровой камеры является разрешение. Эта величина зависит от качества оптической системы, числа датчиков в светочувствительной матрице и метода сканирования оригинала. Для сканера формата А4, считывающего изображение построчно, оснащенного матрицей с 5 тыс. элементов в каждой из линеек, разрешение по горизонтали составляет 600 dpi. Вертикальное разрешение определяется точностью работы привода, перемещающего каретку (или оригинал — в пленочных слайд-сканерах). Если этот механизм способен сделать 1200 остановок на расстоянии в 1 дюйм, то вертикальное разрешение составляет 1200 dpi.
Принято различать аппаратное и программное разрешение. Первое складывается из оптической (горизонтальной) и механической (вертикальной) составляющих и в рассмотренном примере равно 600x1200 dpi. Программное, или интерполяционное, разрешение всегда выше аппаратного. Это достигается путем вставки между реально отсканированными пикселами еще нескольких, цвет которых определяется путем расчетов на основании данных о соседних точках (методом интерполяции). Размер картинки увеличивается, однако полезной информации в ней не прибавляется, возможна даже потеря резкости.
Реальное разрешение устройства зависит также от характеристик оптики. У любого объектива четкость изображения в центре выше, чем по краям. Разница зависит от сложности оптической схемы, качества стекла и точности формы линз. Если дешевый объектив проецирует на матрицу нерезкое, размытое по краям изображение, то независимо от числа датчиков в сенсоре мелкие детали картинки будут потеряны.
2.2.2 Разрядность оцифровкиАналого-цифровой преобразователь (АЦП) — весьма сложное устройство, назначение которого состоит в определении уровня поданного на вход электрического напряжения и выдаче соответствующего ему цифрового значения. Минимальная и максимальная величины входного напряжения зависят от микросхемы АЦП. Точность измерения определяется разрядностью. К примеру, АЦП с разрядностью 4, работающий в диапазоне 0—1 В, выдает 16 цифровых значений (2^=16), и точность измерения составляет 62,5 мВ. Разрядность АЦП, применяемых сегодня в цифровых камерах и сканерах, равна 16 бит, поэтому при таком же диапазоне входных напряжений точность достигает 0,015 мВ. В общем, надо помнить, что от разрядности оцифровки зависит точность, а не диапазон измерений.
2.2.3 Глубина цветаКаждый пиксел представлен тремя числовыми величинами. От их разрядности зависит общее количество оттенков, которое может содержаться в цифровом изображении. Обычно в компьютерах используется 24-битное представление цвета, при котором основные цвета кодируются 8-битными числами. Комбинируя по 256 оттенков красного, зеленого и синего (2^=256), можно получить палитру, состоящую почти из 16,8 млн. цветов (256^= 16777216). В современных сканерах и камерах чаще применяются не 8-, а 12- и 16-разрядные АЦП, которые способны обеспечить 36- и 48-битную глубину цвета.
Говоря о сканерах, различают внутреннюю и внешнюю (выходную) глубину цвета. Внутренняя соответствует разрядности оцифровки, изображение с такой разрядностью обрабатывается встроенным процессором устройства. Выходная определяется форматом файлов, передаваемых в компьютер. Стандарт JPEG основан на 24-битном представлении цветов, файлы TIFF могут содержать 36- и 48-битные пикселы. Когда внутренняя глубина цвета больше выходной, процессор камеры или драйвер сканера выполняет необходимые перерасчеты. В любом случае, чем больше глубина цвета, тем лучше передаются тонкие цветовые переходы и различимее детали изображения.
2.2.4 Тени и светаИзображение состоит из пикселов, отличающихся не только цветовыми оттенками, но и яркостью. Можно составить диаграмму распределения яркости (гистограмму), по горизонтальной шкале которой откладываются значения яркости пикселов от наименьшей (черный цвет) до наибольшей (белый), а по вертикальной — количество пикселов с определенной величиной яркости. Принято разделять гистограмму на три участка. Примыкающий к черному концу называют тенями, к белому - светами, а средний — средними тонами. Важной является способность сканера или камеры фиксировать небольшие отличия яркостей в тенях и светах. От нее, например, зависит, будут ли на цифровом снимке различимы светлые облака на небе или скрытые в глубокой тени предметы.
2.2.5 Оптическая плотностьЛюбая картинка состоит из светлых и темных участков, отличающихся оптической плотностью. Этот параметр изображения определяется как десятичный логарифм отношения количества исходного света к количеству света, отраженному непрозрачным оригиналом или прошедшему через прозрачный. Значения оптической плотности принято указывать числами с пометкой D (от density — плотность). Минимальная величина оптической плотности равна нулю, что соответствует полному пропусканию или отражению света (Dmjn=O D). Для существующих сегодня оригиналов за максимум принята величина Dmax=4,0 D, соответствующая практически непрозрачному участку, через который проходит лишь 1/10000 часть светового потока.
2.2.6 Динамический диапазонЕсли оригинал характеризуется оптической плотностью, то одним из важнейших параметров для сканеров или камер является диапазон плотностей оригиналов, считываемых устройством. Эта величина называется динамическим диапазоном, вычисляется как Dmax~'-'min практически всегда меньше 4,0 D. При недостаточном динамическом диапазоне теряются детали в тенях и светах, получается цифровое изображение с завышенной контрастностью. Для считывания непрозрачных оригиналов хватает динамического диапазона 3,0 D, а вот для пленочных негативов требуется 3,6 D.
При слишком малом динамическом диапазоне становится бессмысленной большая глубина цвета, поскольку детали изображения в тенях и светах все равно пропадут. При динамическом диапазоне 2,4 D разница в количестве пропускаемого света между самыми светлыми и темными участками составляет примерно 250 раз. Соответственно, такому устройству вполне достаточно 8-разрядной оцифровки и 24-битной глубины цвета. Сканер с динамическим диапазоном 3,6 D раскрывает все свои возможности, если оснащен 12-битными АЦП и поддерживает как минимум 36-битный цвет на выходе.
Цветовой шум проявляется в виде неодинаковой окраски соседних пикселов на однотонных участках изображения. Например, рассматривая при увеличении в несколько раз фрагмент цифровой фотографии, соответствующий однородно окрашенной серой стене, можно обнаружить на нем и голубоватые, и красноватые пикселы. Чем их больше и чем сильнее их оттенок отличается от исходного цвета, тем выше уровень цветового шума. Основной причиной его появления считают электрические помехи, влияющие на работу светочувствительной матрицы и АЦП. Действительно, если АЦП различает уровни напряжения с точностью 0,015 мВ, а под влиянием температурных изменений и других внешних и внутренних факторов в фотодиодах матрицы присутствует электрический шум с амплитудой порядка 0,1 мВ, цвет получаемых пикселов будет случайным образом отличаться на десятки градаций.
Уменьшить цветовой шум помогают программные алгоритмы фильтрации, усредняющие цвет соседних пикселов (например, в случае если отличие между ними не превышает заданной величины — порога срабатывания фильтра). Однако при этом может пострадать четкость картинки. А иногда и сама цифровая обработка изображения становится источником цветового шума, если процессор не способен выполнять вычисления с высокой точностью
2.3 ИнтерфейсыЭффективность работы сканера в значительной степени зависит от типа используемого интерфейса. Традиционно сканеры были SCSI устройствами, но за последние годы даже это изменилось. Многие производители сейчас предлагают версии своих продуктов для подключения к расширенному параллельному порту (Enhanced Parallel Port, EPP), что может стать спасением для тех пользователей, которые не в состоянии самостоятельно установить плату SCSI. (Стоит также отметить, что в последнее время сканеры стали выпускать и с портами USB.) Хотя для разных вариантов подключения скорость передачи данных может быть различной, в общем соединение через обычный параллельный порт оказывается примерно вчетверо медленнее, чем SCSI. EPP, скорость передачи данных для которого составляет около 2 Мбайт/с, работает быстрее, чем обычный параллельный порт, но и в этом случае SCSI со скоростью 5 Мбайт/с выигрывает. Однако нельзя забывать, что на скорость сканирования влияют и такие факторы, как объем буферной памяти и тип центрального процессора. Тем не менее, большинство производителей предлагают пользователям ПК и сканеры с адаптером SCSI (кроме того, сканеры комплектуются программным обеспечением, предназначенным для конфигурирования SCSI-интерфейса).
На случай отсутствия в компьютере контроллера SCSI изготовители включают в комплект поставки сканеров простые интерфейсные платы SCSI, предназначенные, как правило, для монтажа в разъеме ISA, а не PCI. Если в машине уже имеется SCSI-контроллер типа Adaptec 1540 или 2940, пользователь может подсоединить сканер непосредственно к контроллеру жесткого диска - при наличии подходящего ASPI драйвера. Это, в частности, возможно для сканеров HP и Mustek. Напомним, что ASPI-стандарт для SCSI-периферии, предложенный Adaptec, позволяет драйверу любого устройства, например дисковода ZIP или сканера, взаимодействовать с любым SCSI-контроллером - от Adaptec до Ultrastor, - имеющим драйвер ASPI. При подключении сканера ко встроенной SCSI-плате необходимо позаботиться о правильном согласовании шины - лишь в этом случае подсоединенные к шине SCSI периферийные устройства смогут нормально функционировать. Иными словами, оба конца цепочки устройств SCSI должны быть снабжены согласующими сопротивлениями (терминаторами). Если внешние устройства SCSI отсутствуют, то следует активизировать терминатор на контроллере, обычно служащем последним звеном в цепочке SCSI (ID 7), первым звеном которой является жесткий диск (ID 0). Сканер рекомендуется использовать в качестве последнего устройства шины SCSI, поэтому после подсоединения сканера надлежит задействовать его собственный терминатор, предварительно отключив согласующее сопротивление на плате контроллера с помощью BIOS. Обычно терминаторы сканеров находятся внутри, и лишь некоторые модели снабжены внешними переключателями.
... С разрешением 2400 тнд Canon Canoscan Lide 500F 17 11/17 26 76 26 76 HP Scanjet4070 16 18/26 26 118 20 45 Epson Perfection 2580 Photo 12 9/6 35 156 22 38 4. Техническое обслуживание и диагностика неисправностей 4.1 Конструкция планшетного сканера Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые ...
... ? 8. Какими программами можно воспользоваться для устранения проблем и ошибок, обнаруженных программой Sandra? Раздел 3. Автономная и комплексная проверка функционирования и диагностика СВТ, АПС и АПК Некоторые из достаточно интеллектуальных средств вычислительной техники, такие как принтеры, плоттеры, могут иметь режимы автономного тестировании. Так, автономный тест принтера запускается без ...
... в зависимости от поколения ПЭВМ, типа процессора и комплекта микросхем (т.н. чипсета) материнской платы. Эти различия, главным образом, связаны с теми системными интерфейсами, которые поддерживает материнская плата. Известны следующие виды локальных шин ЭВМ, использующихся для подключения внешних устройств ПЭВМ: Шина ISA (Industry Standard Architecture) использовалась в ПЭВМ, начиная с моделей с ...
... для чтения записанной на микрофильм информации необходимы специальные устройства. Устройства вывода на микрофильм сравнительно дороги. Вывод графической информации осуществляется с помощью графопостроителей. Рассмотрим устройства ввода информации Самым известным устройством ввода информации является: 1. Клавиатура является основным устройством ввода информации в ПК. Это первое из внешних ...
0 комментариев