1.2 Строение вулканов
Магматические камеры под вулканами в плане обычно имеют форму грубой окружности, но не всегда можно определить, приближается ли их трехмерная форма к сферической или является вытянутой и уплощенной. Некоторые активные вулканы интенсивно изучались с помощью сейсмометров для определения источников вибрации, вызванной движением магмы или пузырьков газа, а также для замеров замедления искусственно генерируемых сейсмических волн, проходящих через магматическую камеру. В некоторых случаях было установлено существование нескольких магматических камер, залегающих на разных глубинах.
У вулканов классической формы (конусообразная гора) ближайшая к поверхности магматическая камера обычно связана с вертикальным цилиндрическим проходом (диаметром от нескольких метров до десятков метров), который называется подводящим каналом. Магма, извергаемая из вулканов такой формы, обычно имеет базальтовый или андезитовый состав. Место, где подводящий канал достигает поверхности, называется жерлом и обычно расположено на дне впадины на вершине вулкана, называемой кратером. Вулканические кратеры являются результатом сочетания нескольких процессов. Мощное извержение может расширить жерло и превратить его в кратер благодаря раздроблению и выбросу окружающих пород, а дно кратера может просесть из-за пустот, оставленных извержением и утечкой магмы. Кроме того, высота краев кратера может увеличиваться в результате накопления материала, выброшенного при взрывных извержениях. Жерла вулканов не всегда находятся под открытым небом, часто они бывают заблокированы обломками или застывшей лавой, либо скрыты под водами озера или накопившейся дождевой воды.
Крупная неглубокая магматическая камера, содержащая магму риолитового состава, часто бывает соединена с поверхностью кольцевым разломом, а не цилиндрическим подводящим каналом. Такой разлом позволяет вышележащим породам двигаться вверх или вниз, в зависимости от изменения объема магмы внутри камеры. Впадину, образованную в результате уменьшения объема магмы внизу (к примеру, после извержения), вулканологи называют кальдерой. Такой же термин используется для обозначения любого вулканического кратера диаметром более 1 км, поскольку кратеры такого размера образуются больше за счет проседания земной поверхности, чем в результате взрывного выброса пород [15].
Рис. 1.1. Строение вулкана [26] 1 - вулканическая бомба; 2 – канонический вулкан; 3 – слой пепла золы и лавы; 4 – дайка; 5 – жерло вулкана; 6 – силь; 7 – магматический очаг; 8 – щитовой вулкан.
1.3 Типы вулканических извержений
вулканизм климат рельеф магма
Жидкие, твердые и газообразные вулканические продукты, а также формы вулканических построек образуются в результате извержений различного типа, обусловленных химическим составом магмы, ее газонасыщенностью, температурой и вязкостью. Существуют разные классификации вулканических извержений, среди них выделяют общие для всех типы.
Гавайский тип извержений характеризуется выбросами очень жидкой, высокоподвижной базальтовой лавы, формирующей огромные плоские щитовые вулканы (рис. 1.2.). Пирокластический материал практически отсутствует, часто образуются лавовые озера, которые, фонтанируя на высоту в сотни метров, выбрасывают жидкие куски лавы типа лепешек, создающие валы и конусы разбрызгивания. Лавовые потоки небольшой мощности растекаются на десятки километров.
Иногда изменения происходят вдоль разломов по серии небольших конусов (рис. 1.3) [11].
Рис. 1.2. Извержение жидкой базальтовой лавы. Вулкан Килауэа [27]
Стромболианский тип (от вулкана Стромболи на Липарских островах к северу от Сицилии) извержений связан с более вязкой основной лавой, которая выбрасывается разными по силе взрывами из жерла, образуя, сравнительно короткие и более мощные потоки (рис. 1.3).
Рис. 1.3. Извержение стромболианского типа [28]
При взрывах формируются шлаковые конусы и шлейфы крученых вулканических бомб. Вулкан Стромболи регулярно выбрасывает в воздух «заряд» бомб и кусков раскаленного шлака [11].
Плинианский тип (вулканический, везувианский) получил свое название по имени римского ученого Плиния Старшего, погибшего при извержении Везувия в 79 г. н.э. (были уничтожены 3 больших города — Геркуланум, Стабия и Помпеи). Характерной особенностью извержений этого типа являются мощные, нередко внезапные взрывы, сопровождающиеся выбросам огромного количества тефры, образующей пепловые и пемзовые потоки. Именно под высокотемпературной тефрой были погребены Помпеи и Стабия, а Геркуланум завален грязекаменными потоками — лахарами. В результате мощных взрывов близповерхностная магматическая камера опустела вершинная часть Везувия, обрушилась и образовалась кальдера, в которого через 100 лет вырос новый вулканический конус — современный Везувий. Плинианские извержения весьма опасны и происходят внезапно, часто без всякой предварительной подготовки. К этому же типу относится грандиозный взрыв в 1883 г. вулкана Кракатау в Зондском проливе между островам Суматра и Ява, звук от которого был слышен на расстоянии до 5000 км, вулканический пепел достиг почти 100-километровой высоты. Извержение сопровождалось возникновением огромных (25—40 м) волн в океане цунами, в которых в прибрежных районах погибло около 40 тыс. человек. На месте группы островов Кракатау образовалась гигантская кальдера.
Извержение вулкана Ключевской Сопки на рис. 1.4. наглядно демонстрирует плинианский тип [11].
Рис. 1.4. Извержение вулкана Ключевской Сопки в 1991 г. соответствует плинианскому типу [фото Смелова Н.П., 1994.] [29]
Пелейский тип извержений характеризуется образованием грандиозных раскаленных лавин или палящих туч, а также ростом экструзивных куполов чрезвычайно вязкой лавы. Свое название этот тип получил от вулкана Мон-Пеле на острове Мартиника в группе Малых Антильских островов, где 8 мая 1902 г. взрывом была уничтожена вершина дремавшего до этого вулкана, и вырвавшаяся из жерла тяжелая раскаленная туча гигантских размеров в мгновение ока уничтожила город Сен-Пьер с 40 тыс. жителей. Палящая туча состояла из взвеси в горячем воздухе раскаленных обломков пепла, пемзы, кристаллов, вулканических пород. Обладая высокой плотностью, эта масса, как лавина, с огромной скоростью устремилась вниз по склону вулкана (рис. 1.5.). После извержения из жерла начала выдвигаться экструзивная «игла» вязкой магмы, которая, достигнув высоты в 300 м, скоро разрушилась.
Извержение такого же типа произошло 30 марта 1956 г. на Камчатке, где грандиозным взрывом была уничтожена вершина вулкана Безымянного. Пепловая туча поднялась на высоту 40 км, а по склонам вулкана сошли раскаленные лавины, оставив после себя плащи пепла и пемзовые лапилли, которые, растопив обильные снега, дали начало мощным грязевым потокам. Высокая подвижность палящих туч достигается за счет выделения газов из раскаленных частиц, которые поддерживаются давлением газа, подобно кораблю на воздушной подушке [11].
Рис. 1.5. Извержение пелейского типа. Извержение Этны [30]
Газовый тип извержений, при котором выбрасываются в воздух лишь обломки уже твердых, более древних пород, либо обусловлен магматическими газами, либо связан с перегретыми грунтовыми водами. В последнем случае извержения называются фреатическими (рис. 1.6) [11].
Рис. 1.6. Вулкан Кудрявый (фреатическое извержение) [31]
Извержения пепловых потоков были широко распространены в недавнем геологическом прошлом, но в классическом виде не наблюдались человеком. В какой-то мере такие извержения должны напоминать палящие тучи или раскаленные лавины. В любом случае на поверхность поступает магматический расплав, который, вскипая, подобно молоку, разрывается, и раскаленные лапилли пемзы, обломки стекла, окруженные раскаленной газовой оболочкой, с огромной скоростью движутся по минимальным уклонам. По существу, это своеобразный высокотемпературный «аэрозоль». Возможным примером подобных извержений могло быть извержение в 1912 г. в районе вулкана Катмай на Аляске, когда из многочисленных трещинных жерл излился пепловый поток, распространившийся примерно на 25 км вниз по долине (рис. 1.7). Он имел мощность около 30 м. В центральной части потока частицы оказались слабо сваренными, а из потока долгое время поднимался пар, за что долина и получила название «Десять тысяч дымов». Важно подчеркнуть, что объем пепловых потоков, может достигать десятков и сотен кубических километров, что говорит о быстром опорожнении очагов с кислым расплавом.
Рис. 1.7. Окрестности вулкана, покрытые пеплом и вулканическими бомбами [12]
Нередко извержения разного типа происходят в мелководных условиях — в океанах и морях. Тогда их отличает образование огромного количества пара, возникающего от соприкосновения горячей магмы с водой. Такие извержения называются гидроэксплозивными.
Грязевой вулканизм — это периодическое или непрерывное извержение газа, воды, иногда с пленками нефти, обломками пород и сопочной грязи. Грязь растекается по склону сопки, наращивая сопочный конус (рис. 1.8). Извержения происходят через некоторые промежутки времени, сопровождаются бурными выделениями газов (взрывов) и иногда выбросами на значительную высоту. После извержения в кратере остаются мелкие сорочки. Проявления грязевого известны в Предкавказье Крыму (около Феодосии), на Апшеронском полуострове Каспия, на Сахалине, Камчатке и др. [11].
Рис. 1.8. Вид грязевого вулкана [32]
ГЛАВА 2. ОСНОВНЫЕ ВУЛКАНИЧЕСКИЕ ПОЯСА ЗЕМЛИ
В настоящее время на земном шаре насчитывается несколько тысяч потухших и действующих вулканов, причем среди потухших вулканов многие прекратили свою деятельность десятки и сотни тысяч лет, а в ряде случаев и миллионы лет назад (в неогеновый и четвертичный периоды), некоторые относительно недавно. По данным В.И. Влодавца общее количество действующих вулканов (с 1500 г. до н. э.) составляет 817, в число которых входят вулканы сольфатарной стадии (201) [5].
Рис. 2.1. Карта распределения вулканизма [35]
Как показывает рис. 2.1., в географическом распределении вулканов намечается определенная закономерность, связанная с новейшей историей развития земной коры. На материках вулканы располагаются главным образом в их краевых частях, на побережьях океанов и морей, в пределах молодых тектонически-подвижных горных сооружений. Особенно широко развиты вулканы в переходных зонах от материков к океанам – в пределах островных дуг, граничащих с глубоководными желобами. В океанах многие вулканы приурочены к срединно-океаническим подводным хребтам. Таким образом, основной закономерностью распространения вулканов является их приуроченность только к подвижным зонам земной коры. Расположение вулканов в пределах этих зон тесным образом связано с глубокими разломами, достигающими подкоровой области. Так, в островных дугах (Японской, Курило-Камчатской, Алеутской и др.) вулканы распространены цепями по линиям разломов, преимущественно продольных разломов поперечными и косыми. Некоторая часть вулканов встречается и в более древних массивах, омоложенных в новейший этап складчатости образованием молодых глубоких разломов [12].
... , вследствие чего образуются колоссальные тучи газа и паров воды, насыщенных лавой,поднимающиеся на огромную высоту . По современным представлениям, вулканизм является внешней, так называемой эффузивной формой магматизма - процесса, связанного с движением магмы из недр Земли к ее поверхности. На глубине от 50 до 350 км, в толще нашей планеты образуются очаги расплавленного вещества - магмы. По ...
... породы. При этом толщина коры становится меньше и в среднем составляет 10-15 км. Особенно тонкой кора становится в глубоководных впадинах (4-5 км). Аномальное гравитационное поле Земли отражает суммарное действие гравитирующих масс, расположенных на различных глубинах в земной коре и верхней мантии. Несмотря на сложную ...
... — Земля и Луна — обращаются вокруг центра масс системы. Отношение массы Луны к массе Земли — наибольшее среди всех планет и их спутников в Солнечной системе, поэтому систему Земля — Луна часто рассматривают как двойную планету. Земля имеет сложную форму, определяемую совместным действием гравитации, центробежных сил, вызванных осевым вращением Земли, а также совокупностью внутренних и внешних ...
... регионов. Уже отмечалось, что зональность конкретизируется в системе ландшафтных зон (которые подразделяются на единицы второго порядка - подзоны), секторность - в системе ландшафтных секторов. Азональная дифференциация выражается в системе физико-географических, или ландшафтных, стран (например, Русская равнина, Урал, Западно-Сибирская равнина), которые подразделяются на ландшафтные области ( ...
0 комментариев