44 г/моль, 28 г/моль, 29 г/моль.
кг/кг.
Тепловой расчет контактного теплоутилизатора ведется на 1 кг сухого газа, поэтому необходимо определить начальное влагосодержание сухих газов, кг/кг с.г.
,
где молекулярная масса сухих газов.
кг/кг с.г.
Определяем конечное влагосодержание дымовых газов, полагая, что на выходе из теплоутилизатора при температуре газ является насыщенным, кг/кг с.г.:
,
где газовая постонная сухого газа,
;
газовая постоянная водяного пара (молекулярная масса пара =18),
;
Р – давление влажного газа в аппарате, МПа, принимаем Р=0,1 МПа;
РМАКС – давление насыщенного пара при =400С, МПа (прил. 6 [1]), РМАКС=0,0076 МПа;
кг/кг с.г.
Определяем давление водяных паров в аппарате по формуле:
МПа
По давлению водяных паров определяем предварительное значение температуры мокрого термометра (прил. 6 [1]):
=52,2 0С при =0,0141 МПа
Определяем влагосодержание дымовых газов , кг/кг с.г. при по формуле:
кг/кг с.г.
Уточняем температуру мокрого термометра по методу, предложенному Н.И. Егоровым. Этот метод основан на составлении теплового баланса теплоутилизатора в момент насыщения газа парами и достижения жидкостью температуры мокрого термометра. В этом случае тепло, содержащееся в газе, равно сумме тепла, внесенного газом в аппарат, и тепла паров, образовавшихся при испарении жидкости.
Тепловой баланс аппарата по газу тогда запишется следующим образом:
,
где теплоемкость сухих газов, определяемая при средней температуре дымовых газов в аппарате =930С, (по прил. 7 [1]): 1,043 кДж/(кг0С);
энтальпия пара при =52,2 0С: 2595 кДж/кг, [3];
энтальпия водяного пара при =1460С, (по прил. 5 [1]), 2741,66 кДж/кг [3];
Подставив значения и , а также и в это уравнение, проверяем сходимость баланса:
%.
Так как погрешность баланса превышает 1 %, то задаемся другим значением температуры мокрого термометра; увеличиваем, так как левая часть баланса меньше правой .
Принимаем =56,0 0С, тогда =0,01688 МПа.
Влагосодержание дымовых газов , кг/кг с.г. определим по формуле:
кг/кг с.г.
Энтальпию пара находим при =56,0 0С, 2600 кДж/кг, энтальпия водяного пара при =1460С и =0,0141МПа 2741,66 кДж/кг [3] .
Тогда проверяем сходимость баланса:
%.
Погрешность баланса не превышает 1 %.
Изображаем на Id–диаграмме процессы охлаждения дымовых газов в контактном теплоутилизаторе :
Определяем средний действительный объем дымовых газов в КТУ по формуле:
,
где средняя температура дымовых газов в аппарате,
0С;
В – расход топлива, В =0,169 м3/с;
удельный объем дымовых газов 15,919 м3/м3;
м3с.
Рассчитываем массовый расход дымовых газов:
,
где плотность дымовых газов при 0С:
,
где сумма произведений объемных долей и молекулярных масс компонентов, г/моль;
кг/м3
кг/с
Для устранения возможной конденсации водяных паров необходимо производить подсушку уходящих из КТУ газов путем перепуска (байпасирования) 10¸15 % или более их объема помимо КТУ и их дальнейшее смешение за теплоутилизатором.
Массовый расход газов через теплоутилизатор с учетом байпасирования определяем через тепловой баланс:
,
где температура газов в устье дымовой трубы,
;
теплоемкость дымовых газов, определяемая по температуре по прил. 7 [1], ;
теплоемкость газов при 0С, определяемая по прил. 7[1], ;
теплоемкость газов при 0С, определяемая по прил. 7[1], ;
кг/с
Определяем расчетный расход газов через теплоутилизатор с учетом байпасирования:
м3/с
Находим начальное значение температуры воды, выходящей из теплоутилизатора:
Рассчитываем секундный расход воды, подаваемой в КТУ:
,
где теплоемкость сухих газов при определяемая 0С по прил. 7 [1], ;
энтальпия водяного пара при 0С , определяемая по прил. 5 [1] 2741,66 кДж/кг [3] ;
энтальпия водяного пара при 0С, определяемая по прил. 4 [1], ;
теплоемкость воды при 0С, определяемая по прил. 4 [1],
;
теплоемкость воды при 0С, определяемая по прил. 4 [1], ;
По найденному значению уточняем температуру выходящей из теплоутилизатора воды:
0С
Определяем несовпадение предварительно заданного и рассчитанного значений :
%,
где температура воды на выходе из теплоутилизатора 0С;
температура воды на выходе из теплоутилизатора 0С
Так как Д=4,25% < 5% 0С
Определяем количество утилизируемой теплоты (теплопроизводительность КТУ):
,
где секундный расход воды, подаваемой в КТУ, 3,274 кг/с;
теплоемкость воды при 0С, определяемая по прил. 4 [1], ;
начальное влагосодержание дымовых газов, 0,10 кг/кг с.г.;
конечное влагосодержание дымовых газов, 0,058 кг/кг с.г.
кВт
Рассчитываем количество нагретой воды, выходящей из теплоутилизатора:
кг/с.
3.КОНСТРУКТИВНЫЙ РАСЧЕТ
Задачами конструктивного расчета являются: выбор типоразмера теплоутилизатора, определение количества аппаратов, определение высоты засыпки насадки в КТУ.
Расчет конструктивных характеристик теплоутилизатора производится для всех размеров заданного типа насадки (таблица 2.1. [1]).
Выбираем тип теплоутилизатора. В качестве КТУ принимаем стандартный контактный экономайзер ЭК-БМ1, выпускаемый двух типоразмеров: ЭК-БМ1-1 с диаметром скруббера 1м и ЭК-БМ1-2 с диаметром 2м.
Выбираем ЭК-БМ1-1 с диаметром скруббера 1 м.
Рассчитываем количество устанавливаемых аппаратов:
,
где диаметр выбранного типа теплоутилизатора, м;
рекомендуемая скорость газов в свободном сечении скруббера
м/с;
шт.
Полученное значение округляем до целого числа, т.е. n = 2 шт. Дальнейший расчет ведем для одного аппарата.
Определяем действительную скорость газов в свободном сечении теплоутилизатора:
м/с
Рассчитываем среднюю разность температур между теплоносителями:
0С
Определяем плотность орошения:
,
где плотность воды при 0С, определяемая по прил. 4 [1], кг/м3;
свободный объем насадки, ; ; ; , размер насадки: 1) 15х15х2; 2) 25х25х3; 3) 35х35х4; 4) 50х50х5 из таблицы 2.1. [1]).
м3/(м2ч)
м3/(м2ч)
м3/(м2ч)
м3/(м2ч)
Рассчитываем поверхностный коэффициент теплообмена:
,
где коэффициент теплопроводности сухого газа при 0С, определяемый по прил. 7 [1], ;
плотность сухих газов при 0С, определяемая по прил. 7
[1], кг/м3;
динамическая вязкость газа при 0С, определяемая по
прил. 7 [1], ;
кинематическая вязкость жидкости, определяемая по прил. 4 [1] при 0С, ;
g – коэффициент свободного падения, g=9,81 м/с2;
a =1,16 – коэффициент перевода из технической системы единиц в СИ;
удельная поверхность насадки в единице объема, ; ; ; (таблица 2.1. [1]);
Определяем расчетную поверхность насадки:
м2
м2
м2
м2
Рассчитываем объем насадки:
м3
м3
м3
м3
Определяем полную высоту насадки и удельное тепловое напряжение:
,
где площадь сечения аппарата, определяемая по формуле:
,
где количество подаваемой в аппарат воды, ;
плотность воды при tж=26,915oС, сж=996,47 кг/м3;
м2
м2
м2
м2
Тогда высота насадки определится:
м
м
м
м.
Определяем удельное тепловое напряжение:
,
По полученным данным строим графические зависимости поверхностного коэффициента теплообмена и полной высоты насадки КТУ от удельной поверхности насадки и (рис.4,5).
Рис.4. График зависимости KF=f(f).
Рис.5 График зависимости H=f(f).
... ). 1.5.7 Теплоутилизаторы При проектировании вентиляции и кондиционирования для экономии тепла и холода целесообразно использовать тепловые вторичные энергетические ресурсы, такие как: • тепло воздуха, удаляемого системами общеобменной вентиляции кондиционирования воздуха и местных отсосов, когда рециркуляция воздуха недопустима; • тепло и холод технологических установок, пригодные для ...
0 комментариев