1.2 Модель взаимодействия WDM с транспортными технологиями

 

В настоящее время WDM играет для оптических синхронных систем ту же роль, что и мультиплексирование с частотным разделением МЧР (FDM) для аналоговых систем передачи данных. По этой причине системы с WDM часто называют системами оптического мультиплексирования с частотным разделением ОМЧР (OFDM). Однако по сути своей эти технологии (FDM и OFDM) существенно отличаются друг от друга. Их отличие состоит не только в использовании оптического (OFDM) или электрического (FDM) сигнала. При FDM используется механизм АМ модуляции с одной боковой полосой (ОБП) и выбранной системой поднесущих, модулирующий сигнал которых одинаков по структуре, так как представлен набором стандартных каналов ТЧ. При OFDM механизм модуляции, необходимый в FDM для сдвига несущих, вообще не используется, несущие генерируются отдельными источниками (лазерами), сигналы которых просто объединяются мультиплексором в единый многочастотный сигнал. Каждая его составляющая (несущая) принципиально может передавать поток цифровых сигналов, сформированный по законам различных синхронных технологий. Например, одна несущая формально может передавать АТМ трафик, другая SDH, третья PDH и т.д. Для этого несущие модулируются цифровым сигналом в соответствии с передаваемым трафиком.

Формально для систем WDM не важно, какие методы кодирования и формирования конкретного цифрового сигнала использовались. Хотя, как правило, в этих системах и передается однотипный трафик, это диктуется используемыми методами синхронизации и единообразием процесса обработки. В отличие от систем SDH транспортируемый сигнал не упаковывается в контейнеры и не подвергается обработке в соответствии со структурой мультиплексирования SDH для формирования транспортного модуля STM-N, который только и может быть передан через физический уровень в канал связи (среду передачи).

Если упрощенно представить многоуровневую модель взаимодействия основных технологий SDH/SONET, ATM, IP (без учета возможности переноса IP через ATM), осуществляющих транспортировку сигнала в глобальных цифровых сетях, и WDM, то до появления последней она имела вид, представленный на рисунок 1.2.а. Модель состояла из трех уровней и оптической среды передачи и показывала, что для транспортировки трафика верхнего уровня (ATM и IP) по оптической среде передачи он должен быть размещен (инкапсулирован) в транспортные модули STM-N/OC-n технологий SDH/SONET, способные, используя физический интерфейс этих технологий, пройти через физический уровень в оптическую среду передачи. Отсюда была ясна необходимость создания технологий инкапсуляции ячеек АТМ, например, в виртуальные контейнеры SDH (ATM over SDH), или пакетов IP в виртуальные трибы SONET (IP over SONET). Этим и занимались соответствующие подкомитеты по стандартизации в таких институтах, как ANSI, ISO, ITU-T и ETSI, разрабатывая стандарты на указанные технологии.

После появления систем WDM модель принимает вид, представленный на рисунок 1.2.б. Теперь модель имеет четыре уровня, не считая оптической среды передачи. Появился промежуточный уровень WDM, который, как и SDH/SONET, обеспечивает физический интерфейс, позволяющий через физический уровень выйти в оптическую среду передачи не только технологии SDH/SONET, но и технологиям ATM и IP. В последнем случае не требуется инкапсуляции ячеек ATM или пакетов IP в промежуточный транспортный модуль технологий SDH/SONET, что не только упрощает процедуру обработки и транспортировки трафика, генерируемого системами ATM и IP, но и существенно уменьшает общую длину заголовков (которые пристыковываются по мере прохождения с верхнего уровня на нижний), повышая процент, занимаемый информационной составляющей трафика, в общей длине передаваемого сообщения, а значит, и эффективность передачи в целом. Естественно, что ATM и IP трафик может быть передан и по традиционной схеме с использованием SDH/SONET, трафик которых может быть также передан с помощью систем WDM, что сохраняет преемственность старых схем транспортировки и увеличивает гибкость композитных систем WDM-SDH/SONET в целом.

 

1.3 Классификация WDM на основе канального плана   Схема расширенного канального плана позволяет предложить следующую схему классификации, учитывающую современные взгляды и тенденции выделять три типа мультиплексоров WDM:

•обычные WDM – МРДВ, •плотные WDM (DWDM) – ПМРДВ, •высокоплотные WDM (HDWDM) – ВПМРДВ.

Хотя до сих пор и нет точных границ деления между этими типами, можно предложить, вслед за специалистами компании Alcatel, некоторые границы, основанные на исторической практике разработки систем WDM и указанном выше стандарте G.692 с его канальным планом, называемым также “волновым планом” или “частотным планом” в зависимости от того, используется ли волновая или частотная шкала канального плана. Итак, можно называть:•системами WDM – системы с частотным разносом каналов не менее 200 ГГц, позволяющие мультиплексировать не более 16 каналов, •системами DWDM – системы с разносом каналов не менее 100 ГГц, позволяющие мультиплексировать не более 64 каналов, •системами HDWDM – системы с разносом каналов 50 ГГц и менее, позволяющие мультиплексировать не менее 64 каналов.



Информация о работе «Разработка систем передачи информации нового поколения»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 133031
Количество таблиц: 9
Количество изображений: 16

Похожие работы

Скачать
68001
6
10

... среде передачи. Радиосети оказываются практически беззащитными, если не применять специальных средств, аппаратных или программных средств защиты информации (ЗИ). Попытаемся открыть основные моменты, от которых в конечном итоге зависит безопасности в беспроводных сетях передачи данных (БСПД). В настоящее время практически везде ведутся исследования по двум направлениям. Первое направление можно ...

Скачать
117713
0
12

... этому адресу. Вызываемое устройство, организовав GPRS-сеанс и получив динамический IP-адрес, устанавливает TCP/IP-соединение с вызывающим устройством. 3. Анализ функционирования систем безопасности, использующих gsm каналы 3.1 Анализ помехоустойчивости и помехозащищённости gsm канала Помехи в радиоканале создаются как за счет искажений сигнала при его распространении, так и в результате ...

Скачать
20193
0
0

... короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей. Компьютер – это самое популярное средство для обработки, хранения и передачи информации и по сей день, но так как в наши дни информации становится все больше, то и компьютеры претерпевают значительные изменения. Для удобства пользователей ...

Скачать
43054
9
4

... ОП, ОРП и НРП по двум ОВ совместно с информационным сигналом. Одна стойка обслуживает два линейных тракта при установке на ОП и четыре при установке на ОРП. Комплект блоков НРП обеспечивает передачу по каждой паре ОВ цифровых сигналов совместно с сигналами СС и ТМ. Оптический сигнал поступает на оптический линейный регенератор (РЛ-О), в котором производится оптоэлектронное преобразование, после ...

0 комментариев


Наверх