4.  Выбор эксплуатационного водоносного горизонта

По сведениям гидрогеологического управления на участке бурения гидрогеологические условия характеризуются данными, которые приведены в таблице 2.

Видно, что на территории расположено два основных водоносных горизонта. Первый от поверхности, безнапорный водоносный горизонт, содержится в средне зернистых песках. Мощность его около 20 м, глубина залегания не постоянная и зависит от рельефа местности. Этот водоносный горизонт является поверхностным слоем и питается за счет атмосферных осадков.

Второй водоносный горизонт, содержит также безнапорные воды, заключенные в крупнозернистых песках. Залегает на глубине 50 – 80 метров. Имеет статистический уровень воды до 55 метров от поверхности. Этот водоносный горизонт хорошо защищен от проникновения поверхностных вод, не зависит от атмосферных осадков, обладает постоянным составом воды и не требует устройства водоочистных сооружений.

Вследствие всего вышесказанного, выбираем в качестве источника водоснабжения – второй водоносный горизонт.

Так как скважина будет являться одиночной, то ее проектирование будем вести как разведочно-эксплуатационной скважины, глубиной 80 метров.

5.  Расчет конструкции скважины

Длина проектируемой скважины составляет около 80 метров, что позволяет бурить скважину ударно-канатным способом. Именно этот способ выбираем для бурения скважины, тем более, что его применение позволяет избежать глинизацию эксплуатационных водоносных горизонтов, а также позволяет опробовать водоносный горизонт при бурении.

Начальный и конечный диаметр скважины принимаются в зависимости от сортамента труб, способа бурения, размеров и конструкции фильтра и насоса. Скважины крепятся несколькими колоннами обсадных труб, число которых зависит от глубины скважины и выхода колонн труб. Колонна обсадных труб наибольшего диаметра называется кондуктором. Эти трубы не входят в число непосредственных технических колонн. Глубина опускания кондуктора назначается до первого водонепроницаемого пласта с заходом в этот пласт на 1 метр. Из гидрологических условий известно, что первый водонепроницаемый пласт – глина, находящаяся на глубине залегания от 30 до 50 метров. Следовательно, первая обсадная колонна – кондуктор будет длиной 31 метр.

Приток воды к скважине в большей степени зависит от диаметра рабочей части фильтра, чем от его длинны. Поэтому для увеличения притока, а, следовательно, для уменьшения числа скважин, сначала назначается максимальное значение диаметра труб, чтобы получить максимальный диаметр фильтра.

Максимально возможный диаметр кондуктора, согласно сортаменту стальных труб, а также ограничению диаметров погружаемых труб, равен 530 мм. Разница в диаметрах между кондуктором и первой колонной, а также между предыдущими и последующими колоннами обсадных труб, должна быть не менее 100 мм. Значит, следующую колонну принимаем диаметром 426 мм. Так как после пласта глины залегает водоносный слой крупного песка, от 50 до 80 метров, то колонна диаметром 426 мм будет последней. Водоносный слой песка – безнапорный, следовательно, длина колонны должна быть длинной до рабочей части фильтра и равна 67,5 метров.

Первая колонна обсадных труб диаметром 530 мм устанавливается с последующим затрубным цементированием колонны и подъемом цементного раствора до устья скважины. Эксплуатационная колонна диаметром 426 мм выводится на 0,5 метра над дневной поверхностью с целью предупреждения попадания в скважину поверхностных вод.

Далее составляем схему конструкции скважины (Приложение 1, рис.3) и проводим расчеты основных элементов (притока воды к скважине и пропускной способности фильтра).

На основании схемы конструкции скважины определяем максимально допустимое понижение уровня воды по формуле:

S = H – (A+Lф+(0,5…1)+(0,5…1)),

где Lф – длинна рабочей части фильтра, которая зависит от мощности водоносного слоя,


Lф≤m – 1,5; Lф≤25 – 1,5≤23,5 м

Принимаем Lф = 12 м, и устанавливаем фильтр на расстоянии 0,5 метров от подошвы.

Длину отстойника примем равной 1 метр.

А – надфильтровый участок,

А = Lнс+в+Lн.ф.,

где Lн – общая длинна погружного насоса (обычно составляет 2 -2,5 м), принимаем Lн = 2м;

ас – необходимый для нормальной работы столб воды над насосом, принимаем ас = 1м;

в – расстояние от нижней части насоса до фильтра, принимаем в = 2м;

Lн.ф.- верхняя часть надфильтровой трубы, которая должна быть в обсадной трубе на участке 3…5 м.

Т.к. длина скважины более 30м, то Lн.ф. принимают не менее 5 м. Принимаем Lн.ф. = 5 м.

Рассчитываем надфильтровый участок:

А = 2+1+2+5 = 10 м.

Максимально допустимое понижение уровня воды:

S = 25 – (10+12+0,5) = 2,5 м.

Рассчитаем приток воды к совершенной скважине в безнапорном водоносном слое в соответствии с расчетной схемой (Приложение 1, рис.3), по формуле:

,


где к – коэффициент фильтрации водосодержащих пород, м/сут;

т.к. водосодержащая порода – крупный песок, принимаем для него к = 30;

Н – мощность водоносного слоя, м;

S – понижение уровня воды в скважине, при обязательном выполнении условия, что S≤0,5Н

2,5≤12,5 – условие выполняется.

r – радиус скважины в его водоприемной части, м;

r = 0,5dф,

где dф – диаметр фильтра.

При ударном бурении диаметр фильтра должен быть на 50 мм меньше внутреннего диаметра обсадной колонны. Принимаем диаметр фильтра dф = 356 мм.

r = 0,5·3,56 = 1,78 м.

R – условный радиус притока воды к скважине, м.

R=

R = 2·2,5· = 136,9 м.

Q =  = 2722 м3/сут.

Так как суточная потребность населенного пункта в воде составляет 2377,3 м3/сут, а суточный приток воды к скважине 2722 м3/сут, значит одной скважины – достаточно.

Рассчитаем пропускную способность фильтра (Приложение 1, рис. 4).

Для крупного песка средний диаметр частиц составляет 0,5…1 мм. Для такого песка необходимо устанавливать фильтры трубчатые или стержневые с проволочной обмоткой, штампованные листы с квадратным сечением сетки.

Размер проходных отверстий при сетчатом покрытии определим по формуле:

d0 = (1,5…2,5)dср = (1,5…2,5)·0,75 = 1,125…1,875 мм.

Т.к. имеем безнапорный водоносный слой, то мощность его ограничена, а, следовательно, и ограничена длина фильтра. Определим диаметр фильтра:

Dф = ,

где Vf = 65 = 65 = 201,8 м/сут.

Dф =  = 0,348 м.


Информация о работе «Проектирование и расчет водозаборной скважины»
Раздел: Строительство
Количество знаков с пробелами: 18790
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
14682
1
1

... пьезометрической сети (по площади и по вертикали), б) надежностью используемых оценок проводимости основного горизонта. Формирование качества воды на месторождениях в пластовых системах краевой зоны артезианских бассейнов "Естественное" изменение качества воды при эксплуатации Для крупных артезианских бассейнов платформ характерно сложное естественное распределение минерализации - как по ...

Скачать
65702
7
0

... ( СНиП 2.04.02.-84п.2.14 ) Т – время тушения пожара – 3ч.  - часовая подача насосной станции: 18,8 , - продолжительность работы насосной станции – 20 часов. 2,4, = 28,35 + 2,4 = 30,75. В системе водоснабжения деревни Федоры принимаем типовую башню ёмкостью = 50 по ТП 901-5-33.85. 4.3      Конструктивное решение Типовой проект разработан для IIб и IIв климатических подрайонов с ...

Скачать
119627
23
0

... на предприятии. Организовано обучение вновь пришедшей молодежи рабочим профессиям, а также обучение рабочих вторым профессиям и повышение квалификации (таблица 1.11). Таблица 1.11 Численность рабочих СУПНП и КРС ОАО «Сургутнефтегаз», прошедших разные виды подготовки и повышения квалификации Вид обучения 2007 год 2008 год Отклонения Обучение профессии 84 121 +37 Второй профессии 31 ...

Скачать
122005
6
4

... нового типа аппаратуры - автономного прибора акустического каротажа АК-Г, было принято решение о его испытании и широком применении при геофизических исследованиях в горизонтальных скважинах Федоровского месторождения Западной Сибири. Автономный скважинный прибор акустического каротажа АК-Г предназначен для измерений параметров распространения продольной и поперечной волн в скважинах, включая ...

0 комментариев


Наверх