4.2  Характеристика программного обеспечения аппаратуры

В состав аппаратуры СГК-1024 входит набор программных средств, поддерживающий всю технологическую цепочку эксплуатации аппаратуры от ее первичной настройки при ремонте и изготовлении до получения исправленных за влияние скважинных условий измерений геофизических параметров – массовых содержаний тория СTh, урана СU и калия СK в породе. Характеристика программных средств первичной обработки данных СГК-1024 приведена в разделе 6. Программные средства настройки, тестирования, калибровки и регистрации данных аппаратуры СГК-1024 привязаны к регистрирующему оборудованию. Комплектность и тип поставляемого программного продукта настройки, тестирования и др. определяются заказчиком.

Программное обеспечение настройки аппаратуры СГК-1024Т используется при выполнении ремонтных работ на базе и предназначено для проведения:

-  настройки спектрометрического тракта аппаратуры;

-  настройки приема сигналов и параметров опроса прибора;

-  цифрового и графического просмотра принимаемой информации;

-  настройки и записи технологических параметров канала СГК;

-  чтения и просмотра «электронного» номера прибора, версии программного продукта и даты его прошивки в прибор;

-  записи регистрируемой информации в файл (например, при испытаниях аппаратуры на термостабильность).

Программное обеспечение тестирования, полевой калибровки и регистрации данных аппаратуры СГК-1024 предназначено для операторского состава и эксплуатируется при проведении каротажных работ, обеспечивая:

-  настройку приема сигналов и параметров опроса прибора;

-  цифровой и графический просмотр принимаемой информации;

-  чтение и просмотр «электронного» номера прибора, версии программного продукта и даты его прошивки в прибор;

-  проведение полевой калибровки аппаратуры с целью установления ее работоспособности и выставления энергетической шкалы; результат полевой калибровки документируется в файл и доступен для анализа при обработке и контроле качества выполненного каротажа;

-  проведение каротажа с автоматической корректировкой энергетической шкалы аппаратуры и расчетом геофизических параметров в реальном масштабе времен.

Подробное описание этих программных продуктов поставляется вместе с технической документацией на аппаратуру в соответствии с условиями ее эксплуатации (с используемыми регистрирующими средствами).


5.  Подготовительные работы партии на базе и на скважине

скважинный прибор плата аппаратура

Подготовительные работы перед проведением ГИС проводят на базе геофизического предприятия и непосредственно на скважине. Перечень работ каротажной партии, проводимых на базе, включает:

А) получение наряд заказа на ГИС

Б) ознакомление с геофизическими и геологическими материалами по скважине, получение твердых копий или файлов данных, необходимых для выполнения ряда работ при ГИС.

В) получение скважинных приборов расходных деталей, материалов, проверка комплектности и исправности.

Г) запись файлов периодических калибровок и сведений об исследуемом объекте в базу данных каротажного регистратора.

Д) оформление необходимой документации на водителей, технику

Е) проверка исправности спускоподъемного оборудования

По прибытию на скважину каротажная партия выполняет следующие подготовительные операции:

1)  Производит проверку готовности скважины к ГИС согласно техническим условиям на их подготовку, и подписывают акт готовности скважины к проведению ГИС

2)  Проверяют правильность задания, указанного в наряд заказе, и при необходимости уточняют его у с представителем заказчика

3)  Устанавливают каротажный подъёмник в 25–40 метрах от устья скважины так, чтобы ось лебёдки была горизонтальной и перпендикулярной направлению на устье скважины, затормаживают и надёжно закрепляют подъёмник, путём подкладывания под колёса тормозных колодок (башмаков), крепят датчики натяжения, глубины, устанавливают направляющие и подвесные ролики, заземляют каротажный подъёмник, производят размотку кабеля, выполняют подключение станции к сети переменного тока.

4)  Сматывают с барабана лебёдки первые витки кабеля так, чтобы его хватило для подключения к прибору, переносят скважинные приборы к устью скважины, заводят кабель в направляющий и подвесной ролики, устанавливают на направляющий ролик сельсин-датчик (датчик глубины);

5)  Подсоединяют к кабельному наконечнику первый скважинный прибор, проверяют его работоспособность и производят спуск на заданную глубину. Перед спуском устанавливают на счётчиках регистратора и панели контроля каротажа нулевые показания глубин.


6.  Проведение геофизических исследований и работ

Регистрируемые параметры

Аппаратура СГК-1024 обеспечивает регистрацию следующих параметров:

-  поток гамма-излучения естественной активности пород на детекторе канала СГК (скоростей счета в энергетических окнах);

-  температура внутри прибора;

-  показания одноосного акселерометра;

-  технологические параметры канала СГК.

Расчетными параметрами являются естественная гамма-активность пород в единицах МЭД либо ЭМДУ и массовые содержания тория, урана и калия в породе.

Дискретность данных по глубине, скорость каротажа

Дискретность записи данных по глубине и скорость каротажа определяются мощностью пласта hmin, подлежащего количественной обработке [5].

Дискретность регистрации данных по глубине должна обеспечивать не менее 5 точек на пласт, подлежащий количественной обработке.

Скорость каротажа должна обеспечивать величину случайной погрешности, приведенной к пласту регламентированной мощности, не более 6% при общих (hmin=3¸4 м) исследованиях и не более 5% при детальных (hmin=1¸2 м) исследованиях по каналу интегрального ГК и не более величины основной относительной погрешности по каналам тория, урана и калия. Для выполнения этих требований скорость каротажа при общих исследованиях не должна превышать 140¸180 м/ч в активном (терригенном) разрезе (JГК >4¸5 мкР/ч) и 110¸150 м/ч в низкоактивном (карбонатном) разрезе (JГК<4¸5 мкР/ч). При детальных исследованиях скорость не должна превышать, соответственно, 80¸120 м/ч и 60¸100 м/ч.

Повышение детальности исследований достигается уменьшением шага дискретизации по глубине при одновременном пропорциональном снижении скорости каротажа. Рекомендуемые значения выбираются из ряда 5, 10, 20 см.

Порядок работы на скважине

Измерения на скважине проводятся в соответствии с технологической схемой, обеспечиваемой используемым регистратором, при выполнении следующих операций:

-  развертывание аппаратуры, ее включение, настройка и проверка работоспособности;

-  прогрев аппаратуры в течение 10¸15 минут (эта операция обычно совмещается со спуском в скважину);

-  спуск прибора в скважину в интервал с повышенной активностью; скорость спуска не должна превышать 5000 м/час;

-  проведение полевой калибровки канала СГК; при работе в связке с аппаратурой нейтронного каротажа следует учитывать возможность активации породы и элементов конструкции скважины нейтронами, а потому полевая калибровка должна в этом случае выполняться вне интервала записи;

-  доставка прибора в интервал каротажа;

-  проведение каротажа с повторением интервала (не менее 50 м) с наибольшей дифференциацией либо интервала, представляющего наибольший интерес; скорость записи при проведении повторного замера должна соответствовать скорости записи основного замера;

-  редактирование записи (при выявлении брака записи исследования выполняются повторно);

-  выключение прибора, подъём и извлечение прибора из скважины; подъем прибора вне интервала исследования ведется со скоростью не более 5000 м/час;

-  свертывание аппаратуры.

При спуске прибора в скважину и проведении каротажа обязательному контролю (дополнительно к [5]) подлежат стабильность приема данных (количество сбоев по приему данных не должно превышать 1 на 10 метров записи) и параметров питания аппаратуры. При проведении каротажа дополнительно следует визуально контролировать качество стабилизации энергетической шкалы – характерные пики текущего регистрируемого спектра и спектра полевой калибровки не должны расходиться более чем на 4¸6 каналов (см. рис. 4).

а)

б)

Рис. 5. Аппаратура СГК-1024Т – визуализация режима измерений

a) – пример правильной настройки энергетической шкалы спектрометра; б) – пример неправильной настройки энергетической шкалы спектрометра.


Красным цветом показан спектр базовой калибровки, синим – текущий зарегистрированный спектр.

Оформление и контроль качества измерений

Редактирование результатов каротажа является обязательным этапом, выполняемым оператором на скважине после завершения измерений данным (очередным) прибором. Этап редактирования обеспечивает увязку данных по магнитным меткам и точкам записи, а также подготовку файла для проведения контроля качества каротажа. Основные положения контроля качества измерений регламентируются технической инструкцией [5], в соответствии с которой качество характеризуется тремя оценками – «хорошо», «удовлетворительно», «брак». Бракованные материалы к обработке не допускаются.

Кроме общих положений инструкции [5] дополнительно контролируются следующие параметры. В интервале перекрытия проводится расчет относительных систематической d и полной случайной dсл погрешностей, приведенных к пласту регламентированной толщины :

,  

 ,

Рекомендуется рассчитываемые значения d и dсл приводить к пласту толщиной H=2, 5 или 10 м. При этом должны выполняться следующие требования. Расхождение между массовыми содержаниями, определенными по основному и повторному замерами (систематические погрешности ), для урана и тория по интервалам не менее 5 м не должно превышать ±2 ppm для общих и ±1.5 ppm для детальных исследований. Соответствующая погрешность определения калия не должна превышать 0.3% для общих исследований и 0.2% для детальных. Полные случайные погрешности определения урана и тория в тех же условиях не должны превышать ±2.5 ppm и ±1.5 ppm, соответственно [5, 7], а калия – ±0.2%.

В интервале контрольных измерений СГК толщины и конфигурации пластов должны соответствовать значениям ранее выполненных исследований.

Общие требования к составу и форматам передаваемой заказчику документации определяются [5], дополнительные – соответствующими соглашениями заказчика и исполнителя работ.

Рекомендуемые форматы вывода калибровочных данных и результатов каротажа на твердых копиях для аппаратуры СГК-1024 приведены в табл. 1, 2 и на рис. 5.

Рис. 6. Рекомендуемый формат вывода результатов каротажа на твердую копию для аппаратуры СГК-1024


Заключение

В данной курсовой работе рассмотрена методика выполнения измерений и обработку результатов измерений при проведении спектрометрического гамма каротажа аппаратурой СГК-1024Т и СГК-1024Т-2Т. Под аппаратурой СГК понимается информационно-измерительный комплекс, обеспечивающий измерение массовых содержаний тория СTh, урана СU и калия СK, а также естественной активности пород методом спектрометрического гамма-каротажа. Аппаратура СГК-1024 предназначена для исследования необсаженных и обсаженных нефтяных и газовых скважин.

В курсовой работе приведены физические основы метода, технические характеристики аппаратуры, изложены методики калибровки, проведения каротажа и обработки результатов измерений.

Аппаратура СГК-1024 предназначена для проведения спектрометрического гамма-каротажа естественной радиоактивности породы с получением массовых содержаний тория СTh, урана СU и калия СK. Аппаратура выпускается в обычном (120°С, 80 МПа, СГК-1024Т) и термобаростойком (175 °С, 140 МПа, СГК-1024Т-2Т) исполнениях. В зависимости от условий применения и требований к точности измерений допустимая скорость каротажа изменяется в пределах 50¸200 м/час.

Курсовая работа написана по данным научно-исследовательских и опытно-методических работ и содержит сведения, необходимые для ознакомления с технологией производства работ аппаратурой СГК-1024, а именно: проведения базовой и полевой калибровок, настройки аппаратуры перед каротажем, выполнения работ в скважине. Подробное описание перечисленных выше элементов технологии работ с аппаратурой СГК-1024 поставляется вместе с программным обеспечением, реализующим соответствующий технологический этап.


Список использованной литературы

1. Справочник по радиометрии. – Госгеолтехиздат, M., 1957.

2. Фертл В.Х. Cпектрометрия гамма-излучения в скважине. – Нефть, газ и нефтехимия за рубежом, 1983, №3, 4, 5, 6, 8, 10, 11.

3. Кожевников Д.А. Гамма-спектрометрия в комплексе геофизических исследований нефтегазовых скважин. – Методическое пособие. M.: ГАНГ, 1996.

4. O. Serra, J. Baldwin, J. Quirein – Theory, interpretation and practical applications of natural gamma ray spectroscopy. SPWLA Twenty-First Annual Logging Symposium, July 8–11, 1.

5. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. – М., 2001 г.

6. Велижанин В.А., Головацкий С.Ю., Саранцев С.Н., Черменский В.Г. и др. Cпектрометрический гамма-каротаж естественной активности пород: аппаратура, метрология, интерпретационно-методическое и программное обеспечения. – Каротажник, №93, г. Тверь, 2002 г.

7. Аппаратура спектрометрического гамма-каротажа. Параметры, характеристики, требования. Методы контроля и испытаний. СТ ЕАГО-086–01. М., 2002.

8. Пакет программ первичной обработки каротажных данных – LogPwin. Руководство пользователя. ООО «Нефтегазгеофизика», Тверь, 2003.

9. Черменский В.Г., Велижанин В.А., Хаматдинов Р.Т., Саранцев С.Н. Способ спектрометрического гамма-каротажа и устройство для его проведения - патент RU 219413 C1


Информация о работе «Аппаратура спектрометрического каротажа СГК-1024»
Раздел: Геология
Количество знаков с пробелами: 42677
Количество таблиц: 7
Количество изображений: 8

0 комментариев


Наверх