4.3 Измеряемые параметры и принципы измерений РВК
В технике СВЧ для формального описания свойств диэлектриков принято пользоваться несколькими парами параметров, а именно:
· относительной диэлектрической проницаемостью ε и проводимостью материала σ;
· действительной ε′ и мнимой ε″ частями абсолютной комплексной диэлектрической проницаемости:
έа = ε′а- јε″а , (4.1)
· действительной n и мнимой nk частями комплексного коэффициента преломления ń = n(1 - jk) либо коэффициентом преломления n и коэффициентом поглощения k;
· относительной диэлектрической проницаемостью ε и тангенсом угла диэлектрических потерь tg δ.
Между названными параметрами существует однозначная связь, в результате чего одни могут быть выражены через другие, например:
ε′ = εа = εεо; ε″ = σ / w; tgδ = ε″/ ε′ = σ / w εа ; έа = n², (4.2)
где εεо= εа – абсолютная диэлектрическая проницаемость;
εо ≈ 8,86∙10‾ ¹² Ф/м – электрическая постоянная;
έ = έа/εо – относительная комплексная диэлектрическая проницаемость.
Приведенные параметры удобны для описания свойств однородных материалов. Для неоднородных материалов (например, слоистых) либо с дефектами необходимо найти поле электрических параметров (их распределение). В подобных случаях удобно характеризовать не материал с электрическими (ε и tg δ), а изделие, диэлектрический слой с радиотехническими параметрами, в частности комплексными коэффициентами прохождения Т (метод на прохождение) либо отражения R (метод на отражение):
, (4.3)
, (4.4)
где |Т| и |R| - модули комплексных коэффициентов,
φ и ψ – соответственно их фазы.
Так как в практике измерений в большинстве случаев используется квадратичное детектирование, при котором показания токового индикатора пропорциональны мощности детектируемого сигнала, то удобно использовать не модули, а квадраты модулей коэффициентов прохождения и отражения, т.е. |Т|² и |R|². Эти величины обычно называются просто коэффициентами прохождения и отражения по мощности и показывают, какая часть мощности падающей волны проходит или отражается от диэлектрического образца. Величины φ и ψ показывают, как меняется фаза волны при её прохождении или отражении от объекта.
Комплексные коэффициенты T и R являются функцией нескольких переменных, а именно:
Т = f1(ε, tgδ, d/λε), (4.5)
R = f2(ε, tgδ, d/λε), (4.6)
где ε и tg δ – электрические параметры материала;
d – геометрическая толщина образца в зоне измерения;
λε – длина волны в диэлектрике.
При известном отношении d/λε между комплексными величинами T и R и параметрами материала существует определенная аналитическая связь. Поэтому по известным значениям T или R могут быть вычислены ε и tgδ и наоборот. Если материал неоднороден, то измеренные значения T или R позволяют перейти к эффективным значениям электрических параметров εэфф tgδэфф. Значения эффективных электрических параметров зависят не только от толщины пластины и длины волны, но и от угла падения электромагнитной волны, а также от выбранного параметра (T или R), по которому они определяются.
Таким образом, в дипломном проекте будет использовать ряд параметров: электрические – ε и tgδ, относящиеся к однородному материалу; и радиотехнические –T, |T|, |Т|², φ (метод на прохождение), R, |R|, |R|², ψ (метод на отражение), относящиеся к изделию (диэлектрической пластине) из однородного либо неоднородного материала, и, наконец, εэфф и tgδэфф , применяемые иногда для характеристики только неоднородных диэлектрических пластин (например, для слоистых пластин или пластин, подвергающихся действию теплового удара).
Перейдем к рассмотрению известных способов измерения электрических и радиотехнических параметров методом свободного пространства. Если на плоскопараллельную пластину под некоторым углом φпад падает плоская, определённым образом поляризованная, электромагнитная волна, то амплитуда и фаза отраженной и прошедшей волн несут информацию о комплексной диэлектрической проницаемости материала. Соответственно существуют две основные группы методов измерения ε и tgδ в свободном пространстве: первые основаны на наблюдении волн, отраженных диэлектрическим объектом, вторые – прошедших диэлектрический объект.
Как известно, комплексный коэффициент отражения границы раздела воздушной и диэлектрической среды определяется формулами Френеля. Эти формулы являются исходными и в теории некоторых методов, основанных на анализе отраженных волн. Как видно, искомая диэлектрическая проницаемость ε связана функциональной зависимостью с φпад , ,, которые в принципе могут быть определенны экспериментально [2, 3].
Сравнение результатов работ различных авторов показывает, что минимальная величина tgδ, которую удалось измерить, используя отраженные волны, составляет 0,001 – 0,002, что, видимо, говорит о реально достижимой чувствительности применяемой аппаратуры.
Сравнение комплексных коэффициентов отражения различно поляризованных волн лежит в основе «поляризационного» метода исследования диэлектриков в свободном пространстве. Суть этого метода заключается в следующем. Если на поверхность раздела двух сред падает электромагнитная волна с круговой или эллиптической поляризацией, то отраженная волна меняет поляризационную структуру [4]. Комплексный коэффициент поляризации отраженной волны p равен отношению коэффициентов Френеля для параллельно и перпендикулярно поляризованной волны.
. (4.7)
Таким образом, экспериментальное нахождение р, например, по амплитудам вертикальной и горизонтальной составляющих поля и углу ориентации поляризационного эллипса также дает возможность вычислить ε.
Другой вариант поляризационного метода определения ε состоит в измерении угла Брюстера и отношения модулей коэффициентов отражения параллельно и перпендикулярно поляризованных волн. Основная ошибка измерений по углу Брюстера и поляризационными методами обусловлено тем, что теория этих методов учитывает отражение волн только от границы раздела двух сред и предполагает отсутствие внутренних многократных отражений, вызываемых теневой поверхностью образца.
Комплексные коэффициенты прохождения параллельно и перпендикулярно поляризованных волн через границу раздела «свободное пространство - диэлектрик» согласно формулам Френеля записываются в виде:
, (4.8)
. (4.9)
Выражения (4.8), (4.9) позволяют вычислить комплексный коэффициент прохождения волны через плоскопараллельную пластину определенной толщины, по значению которого затем можно найти и ε. Иллюстрацией сказанного может быть методика определения ε, в которой используется тот факт, что модуль коэффициента прохождения является осциллирующей функцией толщины плоской диэлектрической пластины [4]. Задача определения ε сводится к экспериментальному нахождению такой толщины, при которой приемная антенной воспринимается максимум или минимум мощности, при этом найденная осциллирующая функция, представляемая графически, позволяет определить и tgδ. Естественно, что определение ε в общем случае может производиться и по одновременно наблюдаемым прошедшей и отраженной волнам.
Радиотехнические параметры T и R функционально связаны с электрическими параметрами ε и tgδ, которые могут быть вычислены по результатам измерений первых. Аналитическая связь между этими параметрами может быть найдена различными способами. В частности, необходимый результат дает последовательное суммирование многих волн, отраженных и прошедших через образец, возникающих в результате многократного переотражения от передней и задней поверхностей образца [8, 9].
Пользуясь упомянутым методом можно найти, что фаза коэффициента прохождения перпендикулярно и параллельно поляризованных волн может быть выражена следующим образом:
, (4.10)
. (4.11)
При нормальном падении волны оба уравнения приводятся к одному.
Для вычисления модуля коэффициента прохождения применяются выражения:
, (4.12)
, (4.13)
, (4.14)
где .
При выводе формул (4.10) – (4.14) не учитывались потери в диэлектрике, однако можно показать, что при tgδ ≤ 0,1 их достоверность снижается весьма незначительно [10].
Рисунок 4.4 – Эквивалентный четырехполюсник, отображающий диэлектрическую пластину, находящуюся в свободном пространстве
При нормальном падении волны выражения для вычисления модуля и фазы коэффициента прохождения (или отражения) пластины из диэлектрика с потерями можно получить, используя следующую модель. Диэлектрический слой (рис. 4.4) толщиной d можно представить в виде отрезка линии передачи с комплексным волновым сопротивлением:
, (4.15)
а свободное пространство по обе стороны от пластины в виде линии передачи без потерь с волновым сопротивлением:
. (4.16)
Комплексные коэффициенты отражения и прохождения могут быть найдены при этом волновой матрицы передачи эквивалентного четырехполюсника, образованного двумя скачками волновых сопротивлений (Z02) и отрезком линии с потерями (Ż02). При выводе этих выражений необходимо произвести замену параметров ε и tgδ на n (коэффициент преломления) и k (коэффициент поглощения), причем связь между ними определяется соотношением , т.е. , откуда:
,
. (4.17)
В развернутом виде полученные выражения для коэффициента прохождения и его фазы имеют следующий вид:
, (4.18)
, (4.19)
для коэффициента отражения и его фазы:
, (4.20)
, (4.21)
где
,
. (4.22)
Из выражений (4.18) – (4.22) находим соответствующие выражения и для диэлектриков без потерь:
, (4.23)
, (4.24)
, (4.25)
. (4.26)
Выражения (4.18) – (4.21), а также (4.23) – (4.26) являются исходными для установления количественной связи электрических и радиотехнических параметров диэлектриков, измеряемых в свободном пространстве при нормальном падении плоской электромагнитной волны.
... к деятельности какого ведомства они относятся. Для Питкярантского района характерен именно сферный тип социальной политики с элементами демографического типа. 1.2. Современный подход к решению вопросов социальной политики в городе и районе. Местное самоуправление в системе государственных и муниципальных органов призвано обеспечивать комплексное решение вопросов обслуживания населения, ...
... в изобилии венчурные инвесткомпании сконцентрировали свои усилия на самых многообещающих отраслях. К ним относились электроника, медицина и технологии обработки данных. Благодаря этому интересу начался рассвет Кремниевой долины, а термин «венчурное финансирование» стал прочно ассоциироваться с понятием «высокие технологии». Закон Рока Если закон Мура знаком почти каждому, то о его прямом следствии ...
... или двигателя. · Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. · Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...
... с запозданием реагирует на падение напряжения и привносит с собой противоречивые требования по техническому содержанию. Компенсаторы дисбаланса Еще во времена проектирования первых тяговых подстанций на 25 кВ, 50 Гц переменного тока возникла проблема их подключения к национальной энергетической сети. Действительно, тяговые подстанции соединяются с сетью поставщика энергии (государственной ...
0 комментариев