Светоизлучающие диоды. Светодиодное освещение

15781
знак
1
таблица
0
изображений

Министерство образования и науки Украины

Донбасская национальная академия строительства и архитектуры

Кафедра «Технология, организация и охрана труда в строительстве»

РЕФЕРАТ

на тему «Светоизлучающие диоды. Светодиодное освещение»

Выполнил

ст. гр. ГСХ-13Б

Дмитренко А.А.

Проверила

Кузьменко Л.В.

Макеевка 2010 г.


Содержание

Введение

1. Светоизлучающий диод. Принцип работы

2. Преимущества и недостатки светоизлучающего диода

3. Область применения

4. Стоимость светодиодного светильника, пути снижения себестоимости

5. Перспективы светодиодных ламп в сфере ЖКХ, на широком рынке

6. Использование светодиодных ламп для передачи информации в современных коммуникационных сетях

Заключение

Список используемой литературы


Введение

Светодиодные лампы - это современная альтернатива традиционной лампе накаливания.

Светодиодные энергосберегающие лампы предназначены для использования, как на улице, так и внутри помещения, сочетают в себе традиционное исполнение (цоколь Е-27, Е-14, MR-16, GU-10) и высокую надежность, отсутствие ультрафиолетового и инфракрасного излучения вредного для здоровья, высокую насыщенность и чистоту цвета.


1. Светоизлучающий диод. Принцип работы

 

Светодиод или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока.

Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава, использованного в нем полупроводника.

Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководил Ник Холоньяк.

Как и в любом полупроводниковом диоде, в светодиоде имеется p-n переход. При пропускании электрического тока в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не всякие полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe).

Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают.

Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.


2. Преимущества и недостатки светоизлучающего диода

Преимущества, которыми обладает светоизлучающий диод (СИД) по сравнению с традиционными лампами, позволяют с уверенностью утверждать, что появление новых типов осветительных приборов на основе СИД станет революционным технологическим прорывом в светотехнике.

Впервые светодиоды стали использоваться в промышленной продукции во времена СССР в конце 60-х – начале 70-х гг. Тогда они не обладали требуемой для осветительных приборов светоотдачей, ресурс их был невелик, и светили они не белым цветом, как нужно, а красным или каким-то иным. Все упиралось в материалы. В 90-х гг. по понятным причинам работа над созданием светоизлучающих диодов была приостановлена.

В мире же, наоборот, подобные работы велись нарастающими темпами, и был создан новый материал – нитрид галлия на сапфире, позволивший достичь свечения белого цвета. Особенно в этом плане преуспела японская компания Nichia и ее коллеги-конкуренты из других сопутствующих фирм, разработавшие пять технологических блоков процесса изготовления светильников:

- рост кристаллов сапфира по методу Киропулоса;

- механическую обработку кристаллов сапфира, в т.ч. резку, шлифовку и полировку пластин до 14 класса;

- эпитаксиальное наращивание нитрида галлия на полированных подложках сапфира методом газотранспортных реакций;

- изготовление на эпитаксиальных структурах методом электронной литографии чипов светодиодов;

- сборочное производство (корпусирование) светодиодов.

В настоящее время в мире кристаллы светодиодов поставлены на массовое производство, и ежегодно общемировой прирост объемов их выпуска увеличивается на 30–40%. По результатам 2008 г., мировой рынок светодиодов достиг 25–30 млрд долл.

В настоящее время разработана целая серия осветительных приборов, в т.ч. идентичных по цоколю лампам накаливания мощностью от 40 до 100 Вт, с энергопотреблением 4–10 Вт. Значительно расширены сферы, в которых могут быть использованы приборы. Фактически речь идет о возможной замене существующих ламп накаливания и люминесцентных ламп светильниками на СИД.

Можно отметить основные преимущества ламп на светодиодах:

- низкое энергопотребление – в 10 раз ниже, чем у обычной лампы накаливания, и на 20–25% ниже, чем у энергосберегающей люминесцентной лампы;

- лампы на светодиодах не требуют особой системы утилизации, т.к. они, в отличие от люминесцентных ламп, экологически безвредны. Светодиод не представляет вреда для экологии, его размеры относительно малы;

- пожаро- и взрывобезопасность;

- полная цветовая гамма излучения;

- высокий КПД. Современные светодиоды немного уступают по этому параметру только натриевым газоразрядным лампам. Однако натриевые лампы непригодны для освещения жилых помещений из-за низкого качества света;

- высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих);

- сверхдолгий срок работы – до 100 тыс. ч. Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости;

- спектр современных люминофорных диодов аналогичен спектру люминесцентных ламп, которые давно используются в быту. Схожесть спектра обусловлена тем, что в этих светодиодах также используется люминофор, преобразующий ультрафиолетовое или синее излучение в видимое с хорошим спектром;

- малая инерционность;

- малый угол излучения — также может быть как достоинством, так и недостатком;

- безопасность — не требуются высокие напряжения;

- нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

Недостатки ламп на светодиодах:

- основной недостаток — высокая цена. Отношение цена/люмен у сверхъярких светодиодов в 50 — 100 раз больше, чем у обычной лампы накаливания;

- низкая предельная температура:

мощные осветительные светодиоды требуют внешнего радиатора для охлаждения, потому что имеют неблагоприятное соотношение своих размеров к выделяемой тепловой мощности (они слишком мелкие) и не могут рассеять столько тепла, сколько выделяют (несмотря даже на более высокий КПД, чем у ламп накаливания). Осветительный светодиод мощностью 10 Ватт требует пассивный радиатор размером как у микропроцессора Pentium 4 без вентилятора. Такой большой радиатор не только удорожает конструкцию, но и с трудом может быть вписан в формат бытовых осветительных приборов;

- для питания светодиода от питающей сети необходим низковольтный источник питания постоянного тока, тоже с радиатором, что дополнительно увеличивает объём светильника, а его наличие дополнительно снижает общую надёжность и требует дополнительной защиты. Поэтому многие разработчики ограничиваются выпрямителем, а светодиоды включают последовательно;

- высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты без сглаживающего конденсатора, при его наличии пульсации малы;

- дешёвые массовые LED имеют светоотдачу 60-100 лм/Вт;

- спектр отличается от солнечного.

 


Информация о работе «Светоизлучающие диоды. Светодиодное освещение»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 15781
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
61123
1
11

... (более 104 см-2). Поэтому монокристаллы GaP не обладают пригодной для практики люминесценцией и для получения светоизлучающих р-n-переходов необходимо выращивать эпитаксиальные слои GaP. 2  РАСЧЕТ И ПРОЕКТИРОВАНИЕ СВЕТОДИОДА   2.1 Основные параметры светодиода Uгас. – напряжение гасящее; Uпит. – напряжение питания; Uсв. – напряжение светодиода; Iсв. – ток светодиода ; Rсв. – ...

Скачать
24429
1
9

... занять положения с наименьшей энергией, спускаясь на дно потенциальной ямы в слое, дырки устремятся вверх - к краю валентной зоны в слое, где минимальны их энергии. Широкозонные внешние части гетероперехода можно сильно легировать с обеих сторон, добиваясь больших концентраций в них равновесных носителей. И тогда, даже не легируя активную узкозонную область примесями, удается достичь при инжекции ...

Скачать
73795
1
38

... (в первую очередь излучателя) и волокна. Оптимизация ввода излучения в волокно (рис. 10) может дать выигрыш по мощности до 10 дБ. Объединение элементов в систему. Волоконно-оптическая связь с момента своего появления основывается на принципах передачи цифровой информации. Это обусловлено тремя основными причинами. Во-первых, появление ВОЛС совпало со временем,, когда преимущества цифровых ...

Скачать
34706
0
8

... яркости изображения на большом экране, так как излучение лазеров имеет значительно более низкую световую отдачу, чем излучение обычных источников. 2. Средства отображения информации Для современных средств отображения информации характерно значительное разнообразие реализованных в них физических принципов. Увеличиваются функциональные возможности универсальных УОИ. С другой стороны, расширение ...

0 комментариев


Наверх