1.  ОБЩАЯ КЛАССИФИКАЦИЯ ОСНОВНЫХ ВИДОВ МОДЕЛИРОВАНИЯ

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель, которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Моделирование появилось в человеческой деятельности со времен наскальной живописи и сооружения идолов, т.е. как только человечество стало стремиться к пониманию окружающей действительности; – и сейчас, по-существу, прогресс науки и техники находит свое наиболее точное выражение в развитии способности человека создавать модели объектов и понятий.

Общая классификация основных видов моделирования:

1.  Концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;

2.  Физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений;

3.  Структурно – функциональное – моделями являются схемы (блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;

4.  Математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;

5.  Имитационное (программное) моделирование– при котором логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все из перечисленных видов моделирования или отдельные приемы) [3, стр. 11].

1.1.  Описание компьютерного моделирования

Компьютерное моделирование – метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

К компьютерному моделированию относят:

1.  Структурно-функциональное;

2.  Имитационное.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

1.  Непрерывные;

2.  Дискретные;

3.  Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование.

Имитационный характер исследования предполагает наличие логико- или логико-математических моделей, описываемых изучаемый процесс (систему).

Логико-математическая модель сложной системы может быть как алгоритмической, так и неалгоритмической (например, система дифференциальных уравнений преобразуется в алгоритмическую с использованием численного метода интегрирования, при этом свойства модели меняются и это надо учитывать).

Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строится моделирующий алгоритм, который описывает структуру и логику взаимодействия элементов в системе.

Программная реализация моделирующего алгоритма – есть имитационная модель. Она составляется с применением средств автоматизации моделирования [1, стр. 45].

1.2.  Достоинства имитационного моделирования

Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течении заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

Основное достоинство ИМ:

1.  Возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;

2.  Отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;

3.  Возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы.

Эти достоинства обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

1.  Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления;

2.  Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи;

3.  Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода;

4.  Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства);

5.  Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации;

6.  При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники;

7.  Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов;

8.  Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

Однако имитационное моделирование наряду с достоинствами имеет и недостатки:

1.  Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат;

2.  Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.

Зачастую исследователи обращаются к ИМ, не представляя тех трудностей, с которыми они встретятся и совершают при этом ряд ошибок методологического характера.

Тем не менее, ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем [5].


2.  ОСНОВНЫЕ ЭТАПЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

Вне зависимости от типа моделей (непрерывные и дискретные, детерминированные и стохастические) имитационное моделирование включает в себя ряд основных этапов:

1.  Формулировка проблемы и определение целей имитационного исследования. Документированным результатом на этом этапе является составленное содержательное описание объекта моделирования;

2.  Разработка концептуального описания. Результатом деятельности системного аналитика является концептуальная модель (или вербальное описание) и выбор способа формализации для заданного объектамоделирования;

3.  Формализация имитационной модели. Составляется формальное описание объекта моделирования;

4.  Программирование имитационной модели (разработка программы-имитатора). На этапе осуществляется выбор средств автоматизации моделирования, алгоритмизация, программирование и отладка имитационной модели;

5.  Испытание и исследование модели, проверка модели. Проводится верификация модели, оценка адекватности, исследование свойств имитационной модели и другие процедуры комплексного тестирования разработанной модели;

6.  Планирование и проведение имитационного эксперимента. На данном технологическом этапе осуществляется стратегическое и тактическое планирование имитационного эксперимента. Результатом является составленный и реализованный план эксперимента, заданные условия имитационного прогона для выбранного плана;

7.  Анализ результатов моделирования. Исследователь проводит интерпретацию результатов моделирования и их использование – собственно принятие решений.[3, стр. 31]


3.  СИСТЕМА ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

 

3.1  Методологические подходы к построению дискретных имитационных моделей

В дискретных имитационных системах изменение состава и состояния происходит в дискретные моменты времени, называемые событиями.

Под событием понимается мгновенное изменение состояния модели, произошедшее в результате осуществления множества взаимодействий между компонентами модели в один и тот же момент имитационного времени.

Функционирование дискретной системы можно описать:

1.  Определяя изменения состояния системы, происходящие в моменты свершения событий;

2.  Описывая действия, в которых принимают участие элементы системы;

3.  Описывая процесс, через который проходят элементы.

Процесс – это ориентированная во времени последовательность событий, которая может состоять из нескольких действий.

Эти представления лежат в основе трех альтернативных методологических подходов к построению дискретных имитационных моделей, называемых обычно:

1.  Событийный;

2.  Подход сканирования активностей (на практике получил небольшое распространение);

3.  Процессно-ориентированный подход (включает транзактный способ имитации).

Это основные концепции (схемы) структуризации для дискретных имитационных моделей. Их основа закладывается в некоторые языки и системы моделирования. Примерами могут служить языки моделирования:

1.  GASP, SIMSCRIPT, ориентированные на события;

2.  Язык работ SLAM;

3.  Широко распространенные языки моделирования GPSS, SIMULA и др., предназначенные для описания параллельных процессов.

3.2  Язык моделирования GPSS

GPSS (англ. General Purpose Simulation System — общецелевая система моделирования) — язык программирования, используемый для имитационного моделирования различных систем, в основном систем массового обслуживания.

Система GPSS была разработана сотрудником фирмы IBM Джефри Гордоном в 1961 году. Гордоном были созданы 5 первых версий языка: GPSS (1961), GPSS II (1963), GPSS III (1965), GPSS/360 (1967) и GPSS V (1971). Известный ранее только специалистам, в нашей стране этот программный пакет завоевал популярность после издания в СССР в 1980 году монографии Т. Дж. Шрайбера. В ней была рассмотрена одна из ранних версий языка – GPSS/360, а также основные особенности более мощной версии – GPSS V, поддерживаемой компанией IBM, у нас она была более известна как пакет моделирования дискретных систем (ПМДС). Этот пакет работал в среде подсистемы диалоговой обработки системы виртуальных машин единой серии (ПДО СВМ ЕС) ЭВМ. После окончания поддержки GPSS V компанией IBM следующей версией стала система GPSS/H компании Wolverine Software разработанная в 1978 году под руководством Дж. Хенриксена. В 1984 году появилась первая версия GPSS для персональных компьютеров с операционной системой DOS – GPSS/PC. Она была разработана компанией Minuteman Software под руководством С. Кокса. Конец XX века ознаменовался разработкой компанией Minuteman Software программного продукта GPSS World, увидевшей свет в 1993 году. За сравнительно небольшой период времени было выпущено несколько его версий, причем в каждой последующей возможности системы моделирования наращивались. Помимо этих основных версий существует также Micro-GPSS, разработанная Ингольфом Сталлом в Швеции, это упрощенная версия, предназначенная для изучения языка GPSS и WebGPSS, также предназначенная для изучения работы системы и разработки простейших имитационных моделей в сети интернет [4].


Информация о работе «Производственная линия с пунктами технического контроля и настройки»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 29269
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
720985
5
0

... изолировать себя от земли (стоять на сухих досках, деревянной лестнице и т.д.). Билет № 4. ИТР ответственные за безопасную эксплуатацию ТПУ и ТС 1.  Требования к персоналу. Обучение и работа с персоналом Лица, принимаемые на работу по обслуживанию теплопотребляющих установок и тепловых сетей, должны пройти предварительный медицинский осмотр и в дальнейшем проходить его периодически в ...

Скачать
154989
24
1

... систем отопления. Технологическая схема теплового пункта разработанная инженерами фирмы “Danfoss” приведена на рисунке 2.4. Настоящая схема теплового пункта обеспечивает потребителей тепловой энергией и снабжает горячей водой. Выбор технологического оборудования и средств автоматизации по данной схеме производится, из каталога оборудовании фирмы “Danfoss”. Узлы ввода тепловой сети, учета ...

Скачать
216966
1
41

... проведен анализ сервисных характеристик АТП 10 г. Новомосковска. Предложено для повышения конкурентоспособности этого предприятия создать на его территории пост технического обслуживания и ремонта карбюраторов двигателей легковых автомобилей. Пост следует организовать и укомплектовать современным оборудованием так, что бы на нем смогли не только проверить работоспособность карбюратора двигателя ...

Скачать
76656
20
0

... правильно применять средства защиты при выполнении отдельных операций. Общая система мероприятий по безопасности труда при ремонте автомобилей должна соответствовать ГОСТ 12.3.017-79 «Ремонт и техническое обслуживание автомобилей». ГОСТ 12.2.003-74 «Оборудование производственное», СИ 1042-73 «Санитарным правилам организации технологических процессов и гигиеническим требованиям производственному ...

0 комментариев


Наверх