1.1 Основные свойства пластмасс

 

Химические свойства. С точки зрения химического поведения полимер похож на мономер (или мономеры), из которого (или которых) он получен. Углеводороды этилен H2C=CH2, пропилен H2C=CH–CH3 и стирол H2C=CH–C6H5 претерпевают присоединительную полимеризацию, образуя полиэтилен, полипропилен и полистирол со следующими структурами:

Эти полимеры ведут себя как углеводороды. Они, например, растворимы в углеводородах, не смачиваются водой, не реагируют с кислотами и основаниями, горят, подобно углеводородам, могут хлорироваться, бромироваться и  в случае полистирола  нитроваться и сульфироваться.

Виниловый спирт CH2=CHOH полимеризуется в поливиниловый спирт

проявляющий свойства спирта: он растворим в воде, не смачивается маслами, устойчив к действию кислот и щелочей, подвергается этерификации, с альдегидами и оксидами реагирует подобно другим спиртам.

Полиэфиры, например, состава

растворимы в некоторых высококипящих растворителях. Они не набухают в воде, но постепенно гидролизуются и разрушаются кислотами и щелочами, особенно при повышенных температурах. Эти реакции и свойства характерны для всех эфиров.

Полиамиды (например, найлон-6,6; см. выше) ведут себя подобно амидам. Они еще более труднорастворимы, чем полиэфиры, не набухают в воде и гидролизуются под воздействием кислот и оснований при повышенных температурах, но гораздо медленнее, чем полиэфиры.

Из изложенного ясно, что все главные химические свойства полимеров можно предсказать на основе их формул, рассматриваемых с точки зрения классической органической химии.

Физические свойства полимера, напротив, зависят не только от характера мономера, но в большей степени от среднего количества мономерных звеньев в цепи и от того, как цепи расположены в конечной макромолекуле.

Все синтетические и используемые в промышленности природные полимеры содержат цепи с различным числом мономерных единиц. Это число называют степенью полимеризации (СП) и обычно пользуются его средним значением, поскольку цепи не одинаковы по длине. Средняя длина цепи и СП может быть определена экспериментально несколькими методами (например, осмометрией  измерением осмотического давления различных растворов; вискозиметрией  измерением вязкости; оптическими методами  измерением светорассеяния различными растворами; ультрацентрифугированием, при котором вещества разделяются по их плотности). СП особенно важна при определении механических свойств полимера, поскольку при прочих равных условиях более длинные цепи налагаются друг на друга более эффективно и порождают большие силы сцепления. Можно сказать, что заметная механическая прочность наблюдается уже при СП 50–100, достигая максимума при СП выше 1000.

Термические и механические свойства в сильной мере зависят от расположения мономерных звеньев в полимерных цепях, поскольку полимеры могут кристаллизоваться, если цепи имеют регулярное строение и расположены параллельно друг другу, что достигается процессом, называемым ориентационным вытягиванием с отжигом. Чем выше степень кристалличности, тем тверже продукт, тем выше его температура размягчения и больше устойчивость к набуханию и растворению; низкой степенью кристалличности характеризуются более мягкие продукты с более низкими температурами тепловой деформации и более легкой растворимостью (рис. 1).

Рис. 1 (Объяснение в тексте)

Молекулярному движению в полимерах подвержена не вся цепь. Движение происходит в отдельных сегментах, которые колеблются, вращаются и извиваются независимо друг от друга. Это движение зависит от температуры. При низких температурах движение происходит медленно или почти отсутствует, так что некристаллический или аморфный полимер при низких температурах хрупок и тверд, как стекло. Если материал содержит области кристалличности, они в целом действуют как армирующие элементы, и при низких температурах образец жесткий, твердый и труднорастворимый. Нагревание аморфного полимера ускоряет движение сегментов; по мере повышения температуры это движение становится столь сильным, что материал из твердого и хрупкого (стеклообразного) превращается в достаточно мягкий и пластичный. Температура такого перехода называется температурой стеклования Tст. В случае частично-кристаллического полимера это размягчение происходит только в некоторых местах структуры материала; кристаллические области остаются незатронутыми. Выше точки стеклования такие образцы становятся более гибкими и податливыми, но еще сохраняют свои армирующие кристаллические области, усиливающие жесткость. При дальнейшем нагревании достигается температура, когда плавятся кристаллические области; эта температура, Tпл, называется температурой плавления. Выше нее система ведет себя как очень вязкая жидкость. Такое поведение характерно для термопластов, у реактопластов подобных точек перехода нет.

В табл. 1 показаны критические температуры Tст и Tпл ряда важных промышленных термопластов. Все реактопласты после того, как произошла сшивка цепей, становятся твердыми и жесткими.

 

Таблица 1.

Полимер Tст, °С Tпл, °С
Полиэтилен  80 135
Полипропилен  10 180
Полистирол 100
Поливинилхлорид 80 270
Поливинилиденхлорид  20 190
Полиметилметакрилат 105
Полиакрилонитрил 105 310
Найлон-6 (капрон) 50 223
Найлон-6,6 57 270
Полиэтилентерефталат 69 265
Полиформальдегид (полиоксиметилен, параформ)  85 180
Полиэтиленоксид (полиоксиэтилен)  67 70
Триацетат целлюлозы 130 300
Тефлон (политетрафторэтилен)  113 325
Ниже Tст пластмассы хрупки и тверды, между Tст и Tпл – гибки и податливы, выше Tпл они являются вязкими расплавами.

Оптические свойства. Пластические материалы бывают различной степени прозрачности  от совершенно прозрачных до матовых. Все аморфные полимеры прозрачны, тогда как в частично-кристаллических полимерах появляется некоторая мутность из-за различий в показателях преломления кристаллических и аморфных областей, которые неодинаково отклоняют световые лучи; при этом свет рассеивается и материал выглядит мутным. Если степень кристалличности низка и средний размер кристаллических областей мал, менее 500 Å (1 Å = 10–10 м), тонкая пленка материала еще прозрачна (например, майлар, саран, профакс). Высокая же степень кристалличности и более крупные кристаллические области придают дымчатость даже тонким пленкам (например, полиэтилен, найлон-6, найлон-6,6).

Электрические свойства. Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике. В табл. 2 приведены некоторые важные электрические свойства ряда промышленных пластмасс.

Свойства пластмасс зависят от их основных характеристик: а) природы мономеров; б) средней СП; в) степени кристалличности системы.

Таблица 2. Электрические свойства некоторых промышленных пластмасс

Полимер Диэлектри-ческая проницаемо-сть при 60 Гц Электри-ческая прочность, В/см Коэффици-ент потери мощности при 60 Гц Удельное сопротив-ление, Ом/см
Полиэтилен 2,32 6х106 5х10–4 1019
Полипропилен 2,5 2х106 7х10–4 1018
Полистирол 2,55 7х106 8х10–4 1020
Полиакрилони-трил 6,5 0,08 1014
Найлон-6,6 7,0 3х103 1,8 1014

Полиэтилен-

терефталат

3,25 7х103 0,002 1018

 


Информация о работе «Применение современных стоматологических термопластических материалов в практике ортопедической стоматологии»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 67670
Количество таблиц: 10
Количество изображений: 23

Похожие работы

Скачать
143294
3
0

... упаковка). ПРОИЗВОДИТЕЛЬ: Украина (г. Харьков), «СТОМА». 15. ZHERMACRYL H PLUS Zhermacryl H Plus – полиметакрилатный материал для изготовления протезов. НАЗНАЧЕНИЕ: применяется в ортопедической стоматологии для изготовления базисов съемных зубных протезов. СВОЙСТВА: Zhermacryl H Plus представляет собой пластмассу горя­чего отверждения типа порошок – жидкость ...

Скачать
77372
3
1

... зумовлених їх наявністю; –   надкомплектні зуби відносяться до природжених патологій і часто зустрічаються у дітей із природженими незрощеннями верхньої губи та піднебіння. Дефекти і деформації зубо-щелепної системи у хворих із природженими незрощеннями верхньої губи та піднебіння є складними, комбінованими і такими, що з моменту народження несуть загрозу загальному здоров’ю, а інколи і життю ...

Скачать
17781
0
0

... обхватывают и повторяют контуры опорных зубов. Опорные элементы могут просто приклеиваться к зубу или опускаться в предварительно подготовленные пазы с дополнительной фиксацией светоотверждаемыми композиционными материалами. Такие зубные протезы очень хорошо выручают при потере, к примеру шестых зубов. Эти одиночные вклеенные зубы не могут служить очень долго и потому нуждаются в периодической ...

0 комментариев


Наверх