2. Способы и технологические режимы сушки солода. Основные факторы, влияющие на скорость сушки и качество солода
Основные факторы, влияющие на скорость сушки и качество солода.
Влажность солода в процессе сушки снижается с 44—46 до 3,5—4,5%. Такое количество влаги должно быть удалено при сушке светлого солода за 24, а темного за 48 ч.
Физически процесс удаления влаги состоит из трех стадий:; стадия свободной влаги с нижним пределом около 20%, промежуточная стадия, находящаяся между 20 и 12%, и стадия связанной влаги — ниже 12%. При сушке солода влага (свыше 12%) испаряется свободно, для удаления же связанной влаги требуются высокие температуры.
Существенными физическими факторами, влияющими на процесс сушки солода, являются количество влаги, которую необходимо удалить из солода, а также температура, влажность и количество воздуха, вводимого и удаляемого из сушилки.
Повышение температуры при высокой еще влажности сначала вызывает усиление активности ферментов, в результате чего накапливаются продукты гидролиза веществ зерна. При дальнейшем повышении температуры (выше 60° С) происходит инактивация ферментов вследствие денатурации и коагуляции их белков.
Для ускорения процесса сушки солода, т. е. для достижения такого содержания влаги, при котором повышение температуры не оказывает губительного влияния на ферментативную активность, необходимо увеличение объема воздуха, проходящего через слой солода, в результате чего достигается быстрое обезвоживание солода при сравнительно низких температурах. После этого повышение температуры во второй стадии сушки до 75— 85° С уже не оказывает заметного действия на ферментативную активность солода.
Способы и технологические режимы сушки солода. Для сушки солода применяют различные солодосушилки периодического и непрерывного действия. В качестве сушильного агента применяют либо нагретый в калорифере чистый воздух, либо смесь холодного воздуха с топочными газами. Сушилки с калорифером называют воздушными, а бескалориферные, работающие на смеcи воздуха с топочными газами,— сушилками с непосредственным обогревом.
В воздушных сушилках топочные газы не соприкасаются с высушиваемым солодом, и поэтому сжигаемое топливо может быть любого состава. В сушилках же с непосредственным обогревом к топливу предъявляются высокие требования: топочные газы не должны иметь посторонних запахов и взвешенных твердых частиц. Поэтому в топках сушилок с непосредственным обогревом сжигают природный газ, жидкое топливо, кокс и некоторые сорта высококачественного антрацита.
Наиболее распространены горизонтальные двух- и трехъярусные сушилки.
Двухъярусная (рис.1.) сушилка представляет собой прямоугольное или квадратное высокое здание. На нижнем этаже находится топка 10, на втором этаже — тепловая камера 9, в которой располагается калорифер. В полу тепловой камеры устроены круглые отверстия 11 (воздушные каналы), а в стенах — каналы 5 для поступления наружного холодного воздуха. На третьем этаже расположена камера 7, в которой теплый воздух смешивается с холодным, поступающим из воздушной камеры 12; посредством такого смешивания можно регулировать температуру воздуха. В полу камеры смешивания установлены короткие железные трубы для прохода воздуха, закрытые колпаками 8, которые предотвращают попадание солодовых ростков в тепловую камеру.
Над камерой смешивания (на четвертом этаже) располагается нижняя решетка 6, а над ней (на пятом этаже)—верхняя решетка 4. Сушилка заканчивается сводом, из наиболее высокой точки которого поднимается вытяжная труба 1 для удаления влажного воздуха. Чтобы увеличить тягу в трубе, в нее выводится дымоход от топки. С этой же целью в вытяжной трубе устанавливается вентилятор 2. Под вытяжной трубой подвешивается на противовесах зонт 3, который предохраняет верхнюю решетку от попадания на нее атмосферных осадков и служит для регулирования тяги.
Рис.1.-Схема горизонтальной двухъярусной сушилки.
Свежепроросший солод сначала загружается ровным слоем на верхнюю решетку, где происходит удаление главной массы влаги, т. е. осуществляется стадия подвяливания. Для окончательного высушивания и нагревания до более высоких температур солод с верхней решетки сбрасывают на нижнюю через люки, открываемые и закрываемые со стороны нижней решетки. Для равномерного высушивания и нагревания солод на решетках периодически перемешивается механическими ворошителями 13. Горячий сухой воздух из тепловой камеры поступает сначала в камеру смешивания, а затем последовательно проходит через нижнюю и верхнюю решетки и через вытяжную трубу уходит в атмосферу.
Трехъярусная горизонтальная сушилка аналогична по устройству двухъярусной и отличается от нее лишь наличием третьей решетки.
В последнее время стали применяться горизонтальные одноярусные сушилки с опрокидывающейся решеткой. Солод в такой сушилке сушится без перемешивания, высота слоя достигает 1 м, продолжительность сушки светлого солода составляет 18—20 ч. Такие сушилки более экономичны
В Латвийской сельскохозяйственной академии (ЛСХА) разработана вертикальная солодосушилка непрерывного действия (рис.2.), нашедшая широкое применение на заводах.
Рис.2.-Схема солодосушилки ЛСХА непрерывного действия.
Солодосушилка ЛСХА состоит из приемного бункера для свежепроросшего солода 1, двух загрузочных шахт 2, двух сушильных шахт 4, заключенных в корпус 6, двух разгрузочных шахт 10, двух пар разгрузочных вальцов 11 и приемного бункера 12 для сухого солода со шнековым транспортером 13 для подачи солода на дальнейшую обработку. По бокам и между сушильными шахтами размещены каналы для прохода теплоносителя. В среднем воздушном канале имеются по две сплошные перегородки, а в боковых каналах 8 — по одной. Эти перегородки делят сушилку на четыре зоны и служат для изменения направления движения теплоноситeля. В нижнюю часть сушилки подается теплый воздух. При прохождении через слой солода теплый воздух смешивается с холодным, который подается через каналы 5, 7. Отработанный воздух удаляется из сушилки через канал 3. Нижняя зона (IV) обогревается воздухом температурой 80—85° С, средние (III—II) —60—65° С, верхняя (I) — 28—40° С.
Шахты сушилки трапецеидальной формы, с незначительным расширением книзу, что устраняет возможность зависания в них солода.
Свежепроросший солод загружают в приемный бункер 1, который одновременно является и камерой подвяливания, где солод непрерывно продувается теплым воздухом, поступающим по каналу 9. Через загрузочные шахты 2 солод поступает самотеком в сушильные шахты 4. При продвижении вниз солод продувается теплым воздухом и постепенно теряет влагу. Сухой солод непрерывно удаляется из шахты 10 с помощью разгрузочного вальцового механизма 11 в приемный бункер 12, откуда шнеком 13 направляется к росткоотбивной машине. Такие температурные режимы и интенсивная обработка (продувка) солода сушильным агентом позволили сократить длительность сушки солода до 10—12 ч.
Непрерывно действующие сушилки более экономичны и производительны, чем периодические, кроме того, непрерывность работы дает возможность упростить контроль и полностью автоматизировать процесс.
3. Технология получения спирта из мелассы
пивной сусло солод спирт меласса
Принципиальная технологическая схема производства спирта из мелассы
Мелассу из резервуаров подают насосом в сборники на весах. Взвешенная меласса поступает в смеситель, где смешивается с серной или соляной кислотой, ортофосфорной кислотой или диаммонийфосфатом и антисептиком, которые подаются из сборников-дозаторов.
Если сбраживание мелассного сусла однопоточное, то все вспомогательные материалы смешивают со всем количеством мелассы, поступающим в производство; если же предусматривается двухпоточное сбраживание мелассного сусла, то вспомогательные материалы вносят только в ту часть мелассы, которая предназначена для приготовления дрожжевого мелассного сусла.
Мелассным суслом называют мелассу, разбавленную водой с добавлением питательных веществ, кислот и антисептиков, а дрожжевым мелассным суслом — сусло с содержанием 12% сухих веществ, предназначенное для размножения дрожжей.
Различают одно- и двухпоточное брожение мелассного сусла. Однопоточное брожение мелассного сусла осуществляется в одном потоке с размножением дрожжей на этом же сусле, двухпоточное брожение мелассного сусла осуществляется в двух потоках: сбраживание основного мелассного сусла и дрожжевого мелассного сусла, которые смешиваются при поступлении в бродильную батарею.
Основное мелассное сусло с содержанием 32% сухих веществ приготавливают при двухпоточном способе брожения.
Производственные дрожжи готовят на мелассном сусле с концентрацией сухих веществ 20—22% в случае однопоточного сбраживания или на дрожжевом мелассном сусле при двухпоточном сбраживании мелассного сусла. Для более интенсивного размножения дрожжей сусло непрерывно аэрируют сжатым
воздухом.
Чистую культуру дрожжей разводят в специальных аппаратах чистой культуры (АЧК) и вводят в мелассное сусло периодически — после стерилизации дрожжегенераторов, через 3— 10 дней в зависимости от условий производства.
Производственные дрожжи непрерывно поступают из дрожжегенераторов в головной аппарат бродильной батареи, куда также одновременно подают основное мелассное сусло при двухпоточном брожении. Брожение продолжается в течение 18—20 ч; при температуре 28—30° С.
Зрелая бражка подвергается брагоректификации — разделению на ректификованный этиловый спирт, примеси и барду путем противоточного взаимодействия потоков пара, зрелой бражки и полупродуктов ректификации.
Производство спирта из мелассы включает следующие основные технологические стадии: 1) подготовка мелассы к сбраживанию; 2) приготовление чистых культур дрожжей; 3) приготовление производственных дрожжей; 4) сбраживание мелассного сусла; 5) брагоректификация.
Литература
1.Великая Е.И. Лабораторный практикум по курсу общей технологии бродильных производств / Е.И. Великая, В.К. Суходол- М.: Пищевая промышленность, 1983. -312 с.
2. Косминский Г.И. Технология солода, пива и безалкогольных напитков. Лабораторный практикум по технохимическому контролю производств / Г.И. Косминский. - Минск.: Дизайн ПРО. 1998. - 352с.
3. Мальцев П.М. Технология бродильных производств / П.М. Мальцев П.М.: Пи-щепромиздат. 1980. - 560 с.
4. Технология солода, пива и безалкогольных напитков / К.А. Калунянц и др. - М,:Колос,1992.- 446 с.
5.Химико-технологический контроль производства солода и пива. / Под ред. П.М. Мальцева. - М. .Пищевая промышленность, 1975. -446с.
6. Яромич Л.П. Технология виноделия: Конспект лекций / Л.П. Яромич Л.П. - Могилев. МГУП. 2006.-244с.
... повышенной температуре, несвоевременное шпунтование танков при дображивании, приготовление заторов из сильно растворенных солодов, отрицательно влияют на пенообразование. Раздел 3.Технологический расчет сырья для производства пива Наименование Условное обозначение Количество на 100 кг зернового сырья Объем сусла Vc 54,51583365 Горячее сусло Vгс 56,696467 Холодное сусло Vхс 53, ...
... продукта. Управление этими процессами и получение напитка высокого качества требуют от рабочих знания технологии и оборудования, передовых приемов работы, высокой ответственности за порученное дело. 2. Производство напитков в России В настоящее время производственные мощности в России по производству пива составляют около 400 млн дал, солода 500 тыс. т, безалкогольных. Многие предприятия ...
... категория потребителей проявляет интерес к таким сортам пива, как диетическое и диабетическое. Эти сорта пива находят все большее распространение. При производстве этого пива предъявляются повышенные требования к качеству используемого сырья и главным образом к точному соблюдению технологии. В основе производства - получения сусла с наибольшим содержанием сбраживаемых веществ, чтобы количество ...
... , каждая из которых выпускает Q1/2. Q1=2Q1/2. цена LRAC2 P1 =LRAC1 D Q1/2 Q1 выпуск 1.3 Оценка объемов рынка и показатели монополизации фирмы Источник рыночной власти фирмы, как правило, заключен в захвате ею существенной доли рынка. Именно на рынке взаимодействуют фирмы, параметры рыночного ...
0 комментариев