Обеспечение экологической безопасности путем разработки малоотходного способа реутилизации сернокислых отходов аккумуляторных батарей

45241
знак
0
таблиц
5
изображений

Введение

Экологическая безопасность и эффективное функционирование экономики каждого государства неразрывно связаны с транспортной отраслью. Транспортные системы представляют собой объекты повышенного риска, оказывают влияние на жизнедеятельность населения, санитарно-эпидемиологическую и экологическую безопасность государства.

Одно из основных направлений государственной политики относительно вопросов экологической безопасности — развитие технологий переработки и утилизации отходов [1], в том числе отходов автомобильного транспорта, наиболее опасными из которых являются свинцово-кислотные аккумуляторы. Главная и наиболее опасная в экологическом плане проблема — выбрасывание отработанных аккумуляторов в окружающую среду. В настоящее время в Украине выбрасывается, если считать только аккумуляторы для автомобильного транспорта, около трех миллионов штук в год. Это приблизительно 80 — 90 тыс. т свинца и свинцовых соединений, не менее 21 тыс. т раствора серной кислоты [2].


Глава 1. Производство сульфата алюминия из отходов шамотного производства

В последнее время все больше внимания уделяется комплексной переработке различных видов минерального сырья с целью извлечения всех ценных компонентов, что позволяет достигнуть высоких технико-экономических показателей. Одним из таких видов является алюминийсодержащее сырье — нефелины, алуниты, каолины и глины, минеральная часть углей и т. д., из которых могут быть получены глинозем, соли алюминия, сода, поташ, сернокислый калий, шлам (сиштоф) для получения цемента, а также редкие металлы. Способы переработки алюминийсодержащего сырья можно разделить на кислотные, щелочные и комбинированные [3].

Возможность осуществления селективного разделения трудно растворимого в кислотах кремнезема от глинозема на первом технологическом переделе — сульфатизации позволяет значительно разрабатываемые технологические схемы переработки высококремнистого алюминиевого сырья. Кислотные способы вызывали повышенный интерес еще в конце Х1Х столетия. Однако лишь в последние десятилетия, в связи с появлением хороших кислотостойких материалов, повышенное внимание исследователей вновь направлено на разработку этих методов. Исследования в основном проводятся в двух направлениях: получение солей алюминия, преимущественно сернокислых, и глинозема для металлургических целей. Способы получения сернокислого алюминия, как более простые, вышли за рамки лабораторных исследований и в настоящее время применяются в промышленности.

Основными потребителями сернокислых солей алюминия являются коммунального хозяйства, где они применяются как коагулянт для очистки питьевой воды, и целлюлозно-бумажная промышленность, использующая этот продукт для технологических целей ( проклейка бумаги и картона ) и для водоподготовки.

Ассортимент выпускаемой продукции включает очищенный сернокислый алюминий в твердом виде и в растворе, получаемый из AL2O3, и неочищенный нефелиновый коагулянт из нефелинового концентрата. В небольших количествах получают AL2(SO4)3 из бокситов и каолинов, а также алюмокалиевые квасцы из алунитов.

Широкое распространение каолинов, большие запасы и поверхностное залегание, что позволяет организовать открытую добычу, с давних пор вызывают повышенный интерес исследователей к разработке рациональной технологии переработки[1].

Каолинами и глинами называют смесь различных кристаллических минералов, погруженных в коллоидные вещества, которые состоят главным образом из желатинозного силиката алюминия, кремниевой кислоты и гидроокиси железа, реже — гидроокиси алюминия.

Среди минералов глиноземистых глин различаются следующие группы: каолинитовая, монтмориллонитовая, аллофановая. В глинах чаще всего встречается минерал каолинит.

В качестве основных примесей присутствуют кварц, слюды, карбонаты кальция, магния и др.[3]

Современное производство очищенного сернокислого алюминия основано на применении в качестве сырья гидроксида алюминия, однако он является дорогостоящим и дефицитным сырьем в нашей стране. Именно поэтому разрабатываются методы переработки каолинов.

Сернокислый алюминий получают из каолинов двух видов: неочищенный и очищенный. Неочищенный сернокислый алюминий раньше получали из необожженой каолиноиой глины, которую сушили в пламенной печи при температуре 300-400 С. Каолин обрабатывали в варочном котле при 105-110 С в течение 6-8 ч и массу, содержащую 6-8 % свободной серной кислоты, затем выдерживали в зрельниках до содержания 2-2,5% свободной H2SO4 . Массу выгружали на кристаллизационный стол. Содержание AL2O3 в продукте составляло 9% , свободной H2SO4 не более 2%, железа (в пересчете на Fe2O3) — не выше 0,8% , нерастворимого остатка — не более 23%. Способу присущи существенные недостатки: большая доля ручного труда и очень низкое содержание оксида алюминия при сравнительно высоком содержании нерастворимого остатка.

При обработке обожженного при 700-800 С каолина серной кислотой разложение завершалось в варочных котлах, что исключало дозревание массы в зрельниках. Предложены различные способы механизации кристаллизации продукта: распыление незастывшей массы, кристаллизация на вращающихся барабанах с внутренним водяным охлаждением или в шнеках, в вагонетках с откидными полыми водоохлаждаемыми стенками, в ковшевых конвейерах и др.

Наиболее удачный способ механизации удаления застывшего продукта удалось разработать при разложении каолина избытком серной кислоты с последующей рейтрализацией ее нефелином.

Для исключения обжига каолина предлагали сырой природный каолин обрабатывать большим избытком серной кислоты с последующей нейтрализацией избытка нефелиновой мукой. Применение нефелиновой муки позволяет усовершенствовать разложение каолина, но не увеличивает содержание AL2O3 в продукте выше 9-10% и не снижает содержание нерастворимого остатка. Кроме того, значительное количество кислоты взаимодействует с оксидами щелочных металлов. Образующиеся сульфаты натрия и калия не принимают участия в очистке воды.

Являются балластом, засоряющим питьевую воду.

В Польше разработан способ производства неочищенного коагулянта из глин, заключающийся в том, что сырую глину обрабатывают раствором серной кислоты в автоклавах при температуре 170-190 С. Избыток свободной H2SO4 в пульпе нейтрализуют обожженной глиной. Продукт содержит 7% растворимого AL2O3, 0,5% Fe2O3, 2% свободной H2SO4 и 37% нерастворимого остатка. В работе отмечается, что наличие в коагулянте аморфного SiO2 в виде нерастворимого остатка способствует улучшению коагулирующих свойств продукта.

Производство очищенного сернокислого алюминия из каолинов в небольших количествах было организовано еще в довоенные годы. Каолин обжигали при 750-850 С, разлагали серной кислотой при температуре кипения, пульпу разбавляли и фильтровали. Раствор упаривали и кристаллизовали. Трудность отделения сернокислого раствора от кремнеземистого шлама в процессе фильтрации требует разбавления и упаривания, что сопряжено с усложнением технологической схемы и увеличением тепловых затрат.

Существует также способ, по которому сырую глину смешивают с оборотным маточным раствором и разлагают серной кислотой, взятой в большом избытке, в автоклавных условиях при температуре 170-180 С. Пульпу фильтруют, раствор упаривают в аппаратах с погружными горелками и проводят двухстадийную кристаллизацию. На первой стадии при 50 С кристаллизуют сернокислое железо, содержащее незначительное количество сернокислого алюминия. Продукт используют в качестве коагулянта для очистки сточных и питьевых вод. Во второй стадии кристаллизации после центрифугирования и промывки получают чистый Сернокислый алюминий. Одним из основных затруднений является отделение высококремнеземистого шлама от сернокислотного раствора.

Отстой одновременно является фильтром для очистки готового продукта от нерастворимых примесей. По действующей в настоящее время технологической схеме измельченный каолин подвергают пластификации в валковой дробилке. Каолиновые пластины толщиной 1-3 мм поступают на дегидратирующий обжиг в кольцевую печь с вращающейся подиной. Обжиг проводят при температуре 600-800 С, высота слоя каолина в печи 250 мм. Обожженные каолиновые пластинки загружают в реактор для обработки серной кислотой при температуре 105-115 С. Кристаллизация продукта производится на складе готовой продукции при естественном охлаждении. Закристаллизовавшийся AL2(SO4)3 рыхлят бульдозером с помощью грейферного крана и погрузочной маширой подают в вагоны.

Этот способ по сравнению с ранее известными имеет ряд преимуществ, так как исключаются операции разбавления суспензии после экстрагирования серной кислотой, трудоемкие процессы фильтрования и упаривания растворов сернокислого алюминия. В то же время способу присущи существенные недостатки. Это, прежде всего, сложный процесс подготовки сырья. Применение слоевого обжига приводит к тому, что верхние слои переобжигаются, в нижних слоях происходит недожег. Все это приводит к тому, что из каолина, обожженного в верхних слоях, извлечь полностью оксид алюминия не удается из-за образования труднорастворимого в серной кислоте муллита (AL2O3.3SiO2). Из необожженного каолина нижних слоев AL2O3 также не изивлекается полностью. При обжиге каолина в кольцевой печи большое количество обжигаемого материала просыпается через колосниковую решетку, который затем вновь проходит всю систему подготовки и обжига сырья. Продукты сгорания при 700-800 С разбавляются холодным воздухом и выбрасываются в атмосферу, что снижает тепловой к.п.д.

Применение перколяционной экстракции с рециркуляцией сернокислотного раствора не позволяет обеспечить малую длительность процесса (экстракция 24-26 ч, весь цикл — 40 ч ). Дозировка кислоты составляет 70% стехиометрической в расчете на кислоторастворимый AL2O3 в обожженном каолине. Малая дозировка H2SO4 , подача ее в реактор небольшими порциями и большая длительность экстракции приводит к значительной потере реагентов ( AL2O3 и H2SO4 ) вследствие образования труднорастворимых основных сернокислых солей алюминия, которые удаляются со шламом — сиштофом. Общее извлечение оксида алюминия не привышает 50-55%, что приводит к большому расходу каолина. Раствор сернокислого алюминия с содержанием 13,5% AL2O3 не кристаллизуется на столах.

В ИОНХ АН УССР совместно с Институтом газа АН УССР разработан непрерывный способ получения сернокислого алюминия из каолинов (рис. 1.1 )Сущность технологического процесса заключается в том, из каолина и раствора сернокислого алюминия готовится пульпа влажностью 50-55%, которая поступает на грануляцию в аппарат кипящего слоя при температуре 200-230 С. В грануляторе наряду с гранулированием происходит удаление свободной влаги и частичное обезвоживание сернокислого алюминия, подаваемого с промывными водами. Из гранулятора гранулы ячейковым питателм подаются на обжиг в печь кипящего слоя при температуре 560-580 С. Обожженные гранулы охлаждаются воздухом в холодильнике кипящего слоя и выгружаются в приемный бункер. Воздух после холодильника соединяется с дымовыми газами гранулятора и очищается в циклоне и мокром скруббере. Дымовые газы после обжиговой печи очищаются в циклоне, промывной башне и волокнистом фильтре.

Охлажденные обожженные гранулы подаются на противоточную экстракцию раствором серной кислоты при температуре 100-110 С в барабанный аппарат непрерывного действия, изготовленный из стали ЭИ-943. Навстречу движущимся гранулам непрерывно поступает концентририванная серная кислота ( 93% ) и вода. Вода промывает прореагировавшие гранулы и разбавляет серную кислоту, поступающую на взаимодействие с каолином. Выгрузка прореагировавших гранул происходит с противоположного конца от загрузки обожженного каолина. Таким образом, в одном аппарате одновременно и непрерывно осуществляется взаимодействие каолинита с серной кислотой, промывка и отделение сиштофа. Степень извлечения оксида алюминия в раствор составляет 88-92%. Концентрированный раствор сернокислого алюминия с содержанием 12-13% AL2O3 и до 4% нерастворимого остатка подвергают контрольной фильтрации через слой прореагировавших гранул в присутствии флокулянта ПАА в количестве 18 г/м3 раствора. Осветленный раствор сернокислого алюминия поступает на грануляционное обезвоживание в аппарате кипящего слоя при температуре 180-200 С. После гранулятора получают сернокислый алюминий с содержанием 22-26% AL2O3.

Пыль AL2(SO4)3, уловленная в циклонах, частично поступает на приготовление пульпы, а большей частью подвергается грануляции на тарельчатом грануляторе. Сиштоф после сушки используют в качестве кристаллизационного компонента при получении цемента. Добавка кристаллизационного компонента значительно повышает прочность и придает специальные свойства кальциевым цементам, являющимся основным строительным материалом в народном хозяйстве.

Рисунок 1.1— Принципиальная схема непрерывного способа получения гранулированного сернокислого алюминия из каолинов


К преимуществам этого метода следует отнести :

1.  упрощение подготовки сырья ( исключаются размол, сушка ); приготовление пульпы позволяет подать в обжиговую печь со стабильными физико-химическими свойствами, что не требует постоянного вмешательства в работу обжиговых печей; улучшаются санитарно-гигиенические условия труда, так как уменьшается запыленность подготовительного отделения;

2.  применение для приготовления пульпы в качестве связующего раствора сернокислого алюминия позволяет получить гранулы с большой прочностью. Это уменьшает пылеунос в процессе грануляционного спекания из аппаратов кипящего слоя, позволяет осуществить процесс в барабанном противоточном аппарате непрерывного действия;

3.  грануляция и обжиг в аппаратах кипящего слоя позволяют одновременно с выгрузкой осуществить сепарацию гранул, таким образом, направлять на экстракцию материал постоянного гранулометрического состава;

4.  сернокислая экстракция в барабанном аппарате непрерывного действия совмещена с промывкой и отделением кремнеземистого шлама — сиштофа. Непрерывная подача реагентов и малая длительность процесса позволяют достичь относительно высокой степени извлечения оксида алюминия в раствор ( более 80%);

5.  осуществление обезвоживания и грануляции концентрированных растворов сернокислого алюминия в аппарате кипящего слоя позволяет получать частично обезвоженный гранулированный неслеживающийся продукт с высоким содержанием основного компонента —AL2(SO4)3 (22-26%);


Информация о работе «Обеспечение экологической безопасности путем разработки малоотходного способа реутилизации сернокислых отходов аккумуляторных батарей»
Раздел: Экология
Количество знаков с пробелами: 45241
Количество таблиц: 0
Количество изображений: 5

0 комментариев


Наверх