3. Элементы нелинейных цепей
В линейных цепях параметры используемых элементов (резисторы, конденсаторы, индуктивности) не зависят от значений приложенных к ним напряжений или протекающего через них тока. Однако линейная теория анализа цепей оказывается справедливой только в определенных пределах этих значений. Так, сопротивление R= 10 Ом означает, что отношение падения напряжения на элементе к протекающему через него току равно десяти, независимо от величины этого тока. В действительности же любой реальный элемент таким постоянством не обладает. Например, сопротивление реальных резисторов зависит от температуры, которая в свою очередь определяется не только окружающей средой, но и тепловой энергией, рассеянной в резисторе за счет протекающего через него тока.
На практике при анализе линейных цепей непостоянством параметров элементов цепи часто пренебрегают в силу незначительности их изменений. В частности, зависимость сопротивления резистора от тока можно существенно уменьшить, если при проектировании схемы применить в электрической схеме резистор, способный рассеять расчетную мощность, преобразованную в теплоту. Тогда температура резистора, а значит и его сопротивление, будет определяться в основном температурой окружающей среды, т.е. условиями эксплуатации проектируемого устройства.
Существует обширный класс радиотехнических элементов и устройств, параметры которых существенно зависят от токов или напряжений. Такие элементы называются нелинейными (НЭ) и широко используются в радиотехнике. Для количественного описания свойств НЭ необходимо задать зависимости, определяющие связь между параметром элемента и величиной приложенного напряжения или тока. Такие зависимости принято называть характеристиками нелинейного элемента. В зависимости от типа характеристики можно выделить следующие простейшие нелинейные элементы.
Нелинейный резистивный элемент – полностью определяется зависимостью между током и напряжением: i=f(u) или u=f(i). Данная зависимость называется вольт-амперной характеристикой (ВАХ) нелинейного элемента. Примерами резистивных НЭ являются диоды, стабилитроны, варисторы и др.
Нелинейная емкость – характеризуется нелинейной зависимостью накопленного заряда от приложенного напряжения, т.е. по сути, зависимостью емкости элемента от напряжения: C=f(u), называемой вольт-фарадной характеристикой. В качестве примера элемента с нелинейной емкостью следует назвать варикап, который широко используется в радиоприемных и передающих устройствах для изменения резонансной частоты колебательных контуров.
Нелинейная индуктивность – характеризуется нелинейной связью потокосцепления и тока, которая задается функцией: L=f(i).
В качестве примера более сложного нелинейного устройства следует отметить транзисторы, которые относятся к классу безынерционных нелинейных четырехполюсников (рис.6). В этих полупроводниковых приборах выходной ток (в случае биполярного транзистора - ток коллектора) является сложной функцией не только напряжения, приложенного к коллектору, но и тока в базе транзистора.
Рис. 6
Нелинейность характеристик рассмотренных выше элементов принципиальна для их функционирования в составе соответствующих электронных устройств
4. Основные этапы моделирования
1. Моделирование схем с резистивным НЭ
Рис. 7
1.1. Собрать схему, показанную на рис.7. Выбрать одну из доступных моделей диодов, например 1S2460. В режиме DC Analysis задать параметры для первой варьируемой переменной: Method – Auto, Name – V1, Range – 2 (изменение переменной V1 в диапазоне 0…2 В). В качестве независимой переменной указать напряжение на аноде диода V(1), а в окне X Expression задать переменную I(D1). Включите опцию Auto Scale Ranges и построить ВАХ. Используя режим электронного курсора (Cursor Mode), измерить сопротивление диода на линейном участке ВАХ. Для этого расположить левый и правый курсоры на линейном участке полученного графика на некотором расстоянии друг от друга. Параметр Slope (тангенс угла) для переменной I(D1), который в режиме Cursor Mode находится в нижней части окна графиков, по сути, определяет проводимость диода, а сопротивление – это величина, обратная проводимости.
Задав в окне Analysis Limits диапазон измерения температуры –40…+70 С0 и включив линейную (Linear) шкалу изменения температуры, повторите моделирование в режиме DC. С помощью команды Label Branches определить температуру для каждой из полученных ВАХ.
1.2. Заменить диод D1 в схеме рис. 12 на стабилитрон (Zener Diode), подсоединив его катодом к плюсу источника (встречное включение). Стабилитрон можно «сконструировать» самостоятельно, если в качестве модели диода выбрать GENERIC, а в открывшемся окне задания параметров моделирования диода установить, например, следующие значения: BV = 3 В (напряжение пробоя), RS = 4 Ом (объемное сопротивление диода). Построить ВАХ стабилитрона, задав пределы изменения напряжения источника V1 в пределах 0…4 В. Измерить напряжение стабилизации (пробоя).
1.3. Собрать схему дифференцирующей RC-цепи (рис. 8), подключив параллельно нагрузочному резистору R2 диод D1, используемый в п. 1.1. Сопротивление R1 = 50 Ом имитирует внутреннее сопротивление генератора V1.
Рис. 8
Значения величин R2, C1 выбрать из табл. 2 и установить следующие параметры генератора V1: амплитуда импульса – 10 В, начало переднего фронта – 0,1 мкс, длительность импульса TИ = 5R1C1, период повторения T = 2TИ. В режиме Transient построить графики функций: V(1), V(R1), V(3).
Поменять полярность включения диода и повторить п. 1.3. Проанализировать полученные результаты.
1.4. Собрать схему, приведенную на рис. 14, подключив к электрической цепи генератор Sine Source. Выбрать модель генератора – GENERAL и задать следующие параметры для моделирования:
F = 1 кГц; A = 10 В; DC = 0; PH = 0; RS = 1 Ом; RP = 0; TAU = 0.
Рис. 9
Схема рис. 9 представляет собой простейший однопериодный выпрямитель переменного тока. Резистор R1 служит в качестве нагрузки выпрямителя. Построить графики V(1), V(R1) и I(D1), задав максимальное время моделирования 10 мс. Графики V(1) и V(R1) разместить в одном графическом окне. Используя режим Cursor Mode и команду Tag Vertical, измерить величину пульсаций выходного сигнала (ΔU = UМАКС–UМИН) в конце переходного процесса, выделив курсором соответствующий фрагмент графика (команда Scale).
Провести многовариантный анализ схемы рис. 14, задав изменение величины резистора R1 в пределах 10…150 Ом с шагом 100 Ом. Определить характер влияния нагрузки на величину выходного напряжения.
1.5. Собрать схему, показанную на рис. 10, добавив в схему рис. 9 стабилизирующую цепочку, состоящую из исследованного ранее стабилитрона (п.1.2) и резистора R2. Резистор R3 выполняет роль нагрузочного сопротивления стабилизатора напряжения. Провести анализ схемы в режиме Transient, построив графики V(1), V(2), V(3) в одном графическом окне, а график I(D2) – в другом. Измерить стабилизированное напряжение, вырабатываемое схемой (узел 3). При проведении эксперимента убедиться, что значение параметра BV диода D1 равно 30 В, а диода D2 – 3 В.
Рис. 10
1.6. Заменить в схеме рис. 15 источник переменного напряжения на источник постоянного напряжения (Battery – пиктограмма ), установив величину напряжения источника 10 В. Вызвать диалоговое окно Preferences (пиктограмма ) и на закладке Options включить опцию Circuit Show Slider (размещение на схеме движковых переключателей номиналов резисторов и батарей). Провести анализ схемы в режиме постоянного тока (режим Dynamic DC) при V1 = 10 В. Определить значения узловых потенциалов, токов в ветвях схемы и мощностей, рассеиваемых на элементах схемы.
Меняя с помощью движкового переключателя напряжения на батарее V1, определить диапазон изменения напряжения в узле 1 схемы, при котором стабилитрон выполняет свои стабилизирующие функции, т.е. поддерживает постоянное напряжение в узле 3, близкое к измеренному в п.1.5. Номиналы других компонентов схемы не менять.
2. Исследование характеристик транзистора
2.1. Исследовать вольт-амперную характеристику транзистора, для чего собрать схему рис. 16, установив следующие параметры моделирования: I1 = 1 мА, V1 = 5 В. В качестве транзистора Q1 выбрать модель 2N2368.
Рис. 11
Включить режим DC и в строке Variable 1 задать имя первой варьируемой переменной - V1 с диапазоном изменения 0…5 В. Для второй переменной (Variable 1) указать имя I1 с диапазоном изменения 0…5 мА и с шагом 0,5 мА. Установить линейный метод варьирования обеих переменных. Для построения графика задать по оси X переменную Vce(Q1) – напряжение между коллектором и эмиттером транзистора Q1, а по оси Y указать переменную Ic(Q1) – ток коллектора. Включить опцию Auto Scale Ranges и построить вольт-амперные характеристики транзистора. Используя команду Label Branches, выявить зависимость характеристик Ic(Vce) от тока базы I1.
2.2. Собрать схему транзисторного усилителя, показанную на рис. 17. В качестве источника входного сигнала V1 использовать источник Sine Source, выбрав модель генератора – «1МГц» и задав амплитуду синусоидального сигнала 0,1 В. Используя режим Transient построить графики входного (V(V1)) и выходного (Vc(Q1)) напряжений.
Рис. 13
Измерить размах входного (ΔUВХ) и выходного (ΔUВЫХ) сигнала и рассчитать коэффициент усиления К = ΔUВЫХ /ΔUВХ.
В режиме многовариантного анализа познакомиться с работой усилителя, установив вариацию входного напряжения в диапазоне 0.1…0.6 В с шагом 0.3 В. Определить величину входного сигнала, при котором наблюдаются искажения выходного сигнала.
2.3. Построить амплитудно-частотную и фазочастотную характеристики усилителя, установив в режиме AC диапазон изменения частоты 1…100 МГц. Определить полосу пропускания усилителя.
2.4. Провести анализ режима схемы по постоянному току (Dynamic DC), отключив опцию Circuit Show Slider в окне Preferences.
Выйти из программы МС, не сохраняя содержимого рабочего окна.
электрический цепь схема моделирование программа
Заключение
Перечисленные достоинства делают пакет программ MicroCAP-7 весьма привлекательным для моделирования электронных устройств средней степени сложности. Удобство в работе, нетребовательность к ресурсам компьютера и способность анализировать электронные устройства с достаточно большим количеством компонентов позволяют успешно использовать этот пакет в учебном процессе. В данной работе рассмотрены лишь основные сведения, необходимые для начала работы с пакетом и анализа большинства электронных схем, изучаемых в специальных дисциплинах и используемых при курсовом и дипломном проектировании. В случае необходимости дополнительные (и более подробные) сведения могут быть получены из встроенной подсказки системы (вызывается клавишей <F1> или через меню HELP/Contens).
Библиографический список
1. Косс В.П. Схемотехническое проектирование и моделирование в среде Micro-Cap 8: учебн. пособие. Рязан. гос. радиотехн. ун-т – Рязань, 2007. 80 с.
2. Разевиг В.Д. Схемотехническое моделирование с помощью Micro-Cap 7. – М.: Горячая линия – Телеком, 2003. 368 с.
3. Крылов В.В., Корсаков С.Я. Основы теории цепей для системотехников. – М.: Высш. школа. 1990. 224 с.
... графики переходных процессов, заданных для анализа величин (напряжений в узлах схемы, падений напряжений на двухполюсных элементах, токов в ветвях схемы и т.п.). На рис. 2 показан результат моделирования переходных процессов в пассивной линейной цепи второго порядка, электрическая схема которой приведена в правом окне. Рис. 2 В окно анализа выведены следующие графики: V(1) – импульсный ...
... (Cн >Cк) может быть существенно больше, чем длительность выключения тока, и составляет ( 16 ) 4. БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ ТТЛ ТТЛ - обозначает получившую широкое распространение технологию изготовления интегральных схем (ИС) – транзисторно-транзисторную логику. Отличительной особенностью данной технологии является использование на входах ИС многоэмиттерных транзисторов. На ...
... компонентов при необходимости следует отредактировать в окне редактора графики компонентов, вызываемом с помощью команды Shape Editor в меню Windows [2]. На начальном этапе освоения пакета Micro-Cap некоторые отличия в УГО компонентов от ГОСТов не имеют существенного значения и в дальнейшем будут использованы графические обозначения компонентов, принятые в МС8. Физические характеристики ...
... 10 Приложение А. Листинг программы ........................................................... 11 Введение Целью данной расчетно-графической работы по дисциплине «Электротехника и электроника» является расчёт электрической цепи с последующей проверкой в ППП для моделирования аналоговых схем. В ходе работы требуется определить токи и напряжения в отдельных ветвях цепи. В ...
0 комментариев