5.2.2 Определение диаметров участков вала
Рисунок 3
Диаметры участков вала (рис. 3) рассчитываем в соответствии с рекомендациями таблицы 1[4].
dП = dB+5…10 = 70+10 = 80 мм,
dБП = dП +5…10 = 80+10 = 90 мм,;
dK>dП, принимаем ближайшее большее значение из стандартного ряда dK =85 мм;
dБК = dK+5…10 = 85+10 = 95 мм
В качестве опор примем подшипник 216 ГОСТ 8338-75
6. Проверочный расчет валов 6.1 Проверочный расчет быстроходного вала 6.1.1 Исходные данные
Схема нагружения представлена на рисунке 4.
Силы действующие на вал:
- окружная сила .
- распорная сила
- осевая сила
- сила действия ременной передачи
Рисунок 4. Схема нагружения вала.
6.1.2 Определение реакций в опорахОпределим реакции в опорах
YB·0,172 – Ft·0,086 = 0
YA +YB –Ft = 0
YA = Ft - YB = 10015,5 – 5007,7= 5007,7 H
XB·0,172 + Fr·0,086+ Fb·0,065 = 0
XA +XB +Fr- Fb = 0
XA = - XB - Fr -Fb = -(-2366,8) – 4196-711,2= -2540,4 H
Полученные реакции в опорах
YА = 5007,7 H; YВ = 5007,7 Н; XА = -2366,8 H; XВ = -2540,4 Н.
6.1.3 Проверочный расчет на статическую и усталостную прочностьСтроим эпюры изгибающих моментов Мx и Мy в плоскостях zoy и zox и эпюру крутящих моментов Т (рисунок 5)
Выбираем опасные сечения: А-А и Б-Б (рисунок 4)
Сечение А-А. Концентрация напряжений вызывается канавкой для выхода шлифовального круга; так канавка находится возле подшипника, то суммарный и крутящий моменты возьмем в середине опоры. Моменты по осям и крутящий моменты имеют следующие значения: МХ = 0 Нм; МY = 46,2 Нм; Т=403,5 Нм.
Суммарный момент равен:
Эквивалентный момент равен
Диаметр вала в рассчитываемом сечении
,
где [уИ] - допускаемое напряжение при изгибе; [уИ] =50 МПа ([2], стр. 54),
Рисунок 5 Эпюры моментов
Так как полученный диаметр меньше диаметра под подшипником, полученным в предварительном расчете, следовательно, вал выдержит нагрузку. Значит, оставляем в рассматриваемом сечении диаметр вала, полученный при предварительном расчете d = 50 мм
Условие усталостной прочности имеет вид:
где [S] - требуемый коэффициент запаса прочности; с учетом требуемой жесткости [S] = 3;
Sу - коэффициент запаса прочности по нормальным напряжениям;
где у-1- предел выносливости материала при изгибе; у-1 = 250 МПа ([2], стр. 65, табл. 3.5.);
kу - эффективный коэффициент концентрации напряжений при изгибе; kу= 1,75 ([2], стр. 66, табл. 3.6.);
в - коэффициент поверхностного упрочнения; в = 1,8 ([2], стр. 68, табл. 3.8.);
еу - коэффициент, учитывающий влияние поперечных размеров вала; еу = 0,77 ([2], стр. 68, табл. 3.7.);
уa - амплитуда циклов нормальных напряжений;
;
уm - среднее напряжение цикла нормальных напряжений; уm =0 ;
шу - коэффициент, характеризующий чувствительность материала к асимметрии цикла нагружения; шу = 0 ([2], стр. 65, табл. 3.5.),
Sф - коэффициент запаса прочности по касательным напряжениям;
,
где ф-1- предел выносливости материала при кручении; ф-1 = 150 МПа ([2], стр. 65, табл. 3.5.);
kф - эффективный коэффициент концентрации напряжений при кручении; kф = 1,5 ([2], стр. 66, табл. 3.6.);
в = 1,8 ([2], стр. 68, табл. 3.8.);
еф - коэффициент, учитывающий влияние поперечных размеров вала; еф = 0,81 ([2], стр. 68, табл. 3.7.);
фa - амплитуда циклов касательных напряжений;
;
фm - среднее напряжение цикла касательных напряжений; фm=0 МПа; шф- коэффициент, характеризующий чувствительность материала к асимметрии цикла нагружения; шф = 0 ([2], стр. 65, табл. 3.5.),
следовательно прочность обеспечена
Сечение Б-Б.
Концентрация напряжений вызывается зубьями шестерни; моменты по осям и крутящий моменты имеют следующие значения: МХ = 430,7 Нм; МY = 218,5 Нм; Т=403,5 Нм.
Суммарный момент равен:
Эквивалентный момент равен
Диаметр вала в рассчитываемом сечении
,
где [уИ] - допускаемое напряжение при изгибе; [уИ] =50 МПа ([2], стр. 54),
Так как полученный диаметр меньше диаметра впадин шестерни, полученным в предварительном расчете, следовательно вал выдержит нагрузку. Значит оставляем в рассматриваемом сечении диаметр вала полученный при предварительном расчете d = 74,575 мм
Условие усталостной прочности имеет вид:
где [S] - требуемый коэффициент запаса прочности; с учетом требуемой жесткости [S] = 3;
Sу - коэффициент запаса прочности по нормальным напряжениям;
гдеу-1 = 250 МПа ([2], стр. 65, табл. 3.5.);
kу= 1,66 ([2], стр. 66, табл. 3.6.);
в = 1,7 ([2], стр. 68, табл. 3.8.);
еу = 0,74 ([2], стр. 68, табл. 3.7.);
;
уm =0;
шу = 0 ([2], стр. 65, табл. 3.5.),
Sф - коэффициент запаса прочности по касательным напряжениям;
,
где ф-1 = 150 МПа ([2], стр. 65, табл. 3.5.);
kф = 1,54 ([2], стр. 66, табл. 3.6.);
в = 1,7 ([2], стр. 68, табл. 3.8.);
еф = 0,786 ([2], стр. 68, табл. 3.7.);
;
фm=0 МПа;
шф = 0 ([2], стр. 65, табл. 3.5.),
следовательно прочность обеспечена.
6.2 Проверочный расчет тихоходного вала 6.2.1 Исходные данныеСхема нагружения представлена на рисунке 6.
Силы действующие на вал:
- окружная сила .
- распорная сила
- осевая сила
- сила действия муфты
где dм - диаметр расположения элементов муфты с помощью которых передается крутящий момент; примем dм = 3dв = 3·0,070 = 0,21 мм
Н
Рисунок 6. Схема нагружения вала
6.2.2 Определение реакций в опорахОпределим реакции в опорах
YB·0,18 + Ft·0,09 – Fм·0,355 = 0
YA +YB +Ft - Fм = 0
YA = Fм -Ft - YB =4317,7 -10015,5 –3507,7= -9205,5 H
XB·0,18 - Fr·0,09 = 0
XA +XB -Fr = 0
XA = Fr - XB = 4096-2098 = 2098 H
Полученные реакции в опорах
YА = -9205,5 H; YВ = 3507,7 Н; XА = 2098 H; XВ = 2098 Н.
6.2.3 Проверочный расчет на статическую и усталостную прочностьСтроим эпюры изгибающих моментов МX и МY в плоскостях zoy и zox и эпюру крутящих моментов Т (рисунок 7)
Выбираем опасные сечения: А-А и Б-Б (рисунок 6).
Сечение А-А. Концентрация напряжений вызывается шпоночным пазом; по осям и крутящий моменты имеют следующие значения: МХ = 828,5 Нм; МY = 188,8 Нм; Т=1511,2 Нм
Рисунок 7 Эпюры моментов.
Суммарный момент равен:
Эквивалентный момент равен
Диаметр вала в рассчитываемом сечении
,
где [уИ] - допускаемое напряжение при изгибе; [уИ] =50 МПа ([2], стр. 54),
Так как полученный диаметр меньше диаметра под зубчатым колесом, полученным в предварительном расчете, следовательно вал выдержит нагрузку. Значит оставляем в рассматриваемом сечении диаметр вала полученный при предварительном расчете d = 85 мм
Условие усталостной прочности имеет вид:
где [S] - требуемый коэффициент запаса прочности; с учетом требуемой жесткости [S] = 3;
Sу - коэффициент запаса прочности по нормальным напряжениям;
гдеу-1 = 250 МПа ([2], стр. 65, табл. 3.5.);
kу= 1,75 ([2], стр. 66, табл. 3.6.);
в = 1,8 ([2], стр. 68, табл. 3.8.);
еу = 0,785 ([2], стр. 68, табл. 3.7.);
;
где b=0,022 м – ширина шпоночного паза;
t1=0,009 м – глубина шпоночного паза;
уm =0;
шу = 0 ([2], стр. 65, табл. 3.5.),
Sф - коэффициент запаса прочности по касательным напряжениям;
,
где ф-1 = 150 МПа ([2], стр. 65, табл. 3.5.);
kф = 1,5 ([2], стр. 66, табл. 3.6.);
в = 1,8 ([2], стр. 68, табл. 3.8.);
еф = 0,745 ([2], стр. 68, табл. 3.7.);
фm=0 МПа; шф = 0 ([2], стр. 65, табл. 3.5.),
следовательно прочность обеспечена.
Сечение Б-Б
Концентрация напряжений вызывается канавкой для выхода шлифовального круга; так канавка находится возле подшипника, то моменты по осям и крутящий моменты имеют следующие значения: МХ = 755,6 Нм; МY = 0 Нм; Т=1511,2 Нм.
Суммарный момент равен:
Эквивалентный момент равен
Диаметр вала в рассчитываемом сечении
,
где [уИ] - допускаемое напряжение при изгибе; [уИ] =50 МПа ([2], стр. 54),
Так как полученный диаметр меньше диаметра под подшипником, полученным в предварительном расчете, следовательно, вал выдержит нагрузку. Значит, оставляем в рассматриваемом сечении диаметр вала, полученный при предварительном расчете d = 80 мм
Условие усталостной прочности имеет вид:
где [S] - требуемый коэффициент запаса прочности; с учетом требуемой жесткости [S] = 3;
Sу - коэффициент запаса прочности по нормальным напряжениям;
Где у-1 = 250 МПа ([2], стр. 65, табл. 3.5.);
kу= 2,5 ([2], стр. 66, табл. 3.6.);
в = 2,8 ([2], стр. 68, табл. 3.8.);
еу = 0,81 ([2], стр. 68, табл. 3.7.);
;
уm =0;
шу = 0 ([2], стр. 65, табл. 3.5.),
Sф - коэффициент запаса прочности по касательным напряжениям;
,
где ф-1 = 150 МПа ([2], стр. 65, табл. 3.5.);
kф = 1,8 ([2], стр. 66, табл. 3.6.);
в = 2,8 ([2], стр. 68, табл. 3.8.);
еф = 0,76 ([2], стр. 68, табл. 3.7.);
;
фm=0 МПа;
шф = 0 ([2], стр. 65, табл. 3.5.),
следовательно прочность обеспечена.
частота вращения вала n = 487,5 об/мин,
требуемая долговечность подшипников L10h = 5256 часа
осевая сила FА = 0 Н
подшипник шариковый радиальный №210
7.1.2 Расчет опорРеакция в левой опоре
,
где YА = 5007,7 H; XА = -2366,8 H – реакции в опоре
Реакция в правой опоре
где YВ = 5007,7 Н; XВ = -2540,4 Н – реакции в опоре
Для этого подшипника по справочнику ([1], табл. 24.16.) находим
Сr = 35100 Н, С0r = 19800 Н
Вычисляем эквивалентные динамические радиальные нагрузки
РE1 = VFr1 Kу KT
РE2 = VFr2KуKT
где V= 1 - коэффициент вращения колеса;
Kу = 1,2 - коэффициент динамической нагрузки
KT = 1 - температурный коэффициент
РE1 = 1·5538,8··1,2·1=6646,6 H
РE2 = 1·5615,2··1,2·1=6738,2 H
Для наиболее нагруженного 2-го подшипника определяем требуемую динамическую грузоподъемность
Так как Стр< Сr (35097 < 35100), то предварительно намеченный подшипник подходит.
7.2 Расчет подшипниковых опор быстроходного вала 7.2.1 Исходные данные:частота вращения вала n = 125 об/мин,
требуемая долговечность подшипников L10h = 5256 часов
осевая сила FА = 0 Н
подшипник шариковый радиальный №216
7.2.2 Расчет опор
Реакция в левой опоре
,
где YА = -9205,5 H; XА = 2098 H – реакции в опоре
Реакция в правой опоре
где YВ = 3507,7 Н; XВ = 2098 Н – реакции в опоре
Для этого подшипника по справочнику ([1], табл. 24.16.) находим
Сr = 70200 Н, С0r = 45000 Н
Вычисляем эквивалентные динамические радиальные нагрузки
РE1 = VFr1 Kу KT
РE2 = VFr2KуKT
где V= 1 - коэффициент вращения колеса;
Kу = 1,2 - коэффициент динамической нагрузки
KT = 1 - температурный коэффициент
РE1 = 1·9441,5··1,2·1=11329,8 H
РE2 = 1·4087,2··1,2·1=4904,7 H
Для наиболее нагруженного 1-го подшипника определяем требуемую динамическую грузоподъемность
Так как Стр< Сr (38559<70200), то предварительно намеченный подшипник подходит.
привод конвейер электродвигатель редуктор
8. Выбор и расчет шпоночных соединений 8.1 Шпоночное соединение быстроходного вала редуктора со шкивом ременной передачи 8.1.1 Исходные данные
диаметр вала d = 45 мм
крутящий момент Т = 403,5 Нм
8.1.2 Выбор шпонкиПредварительно принимаем призматическую шпонку. По диаметру вала выбираем размеры шпонки:
ширина шпонки b = 14 мм,
высота шпонки h = 9 мм,
длина шпонки l = 63 мм,
глубина паза на валу t1 = 5,5 мм,
глубина паза ступицы t2 = 3,8 мм.
8.1.3 Расчет на смятиеУсловие прочности на смятие
где [усм] - допускаемое напряжение на смятие; [усм] = 100 МПа ([2], стр. 74);
lр - рабочая длина шпонки; lр = l - b = 63 - 14 = 49 мм.
следовательно, условие прочности обеспечено.
8.1.4 Расчет на срезУсловие прочности на срез
,
где [фср] - допускаемое напряжение на срез; [фср] = 100 МПа ([2], стр. 74);
следовательно, условие прочности обеспечено.
8.2 Шпоночное соединение тихоходного вала с зубчатым колесом. 8.2.1 Исходные данныедиаметр вала d = 85 мм
крутящий момент Т = 1511,2 Нм
8.2.2 Выбор шпонкиПредварительно принимаем призматическую шпонку. По диаметру вала выбираем размеры шпонки:
ширина шпонки b = 22 мм,
высота шпонки h = 14 мм,
длина шпонки l = 90 мм,
глубина паза на валу t1 = 9 мм,
глубина паза ступицы t2 = 5,4 мм.
8.2.3 Расчет на смятиеУсловие прочности на смятие
где [усм] = 100 МПа ([2], стр. 74);
lр = l - b = 90 - 22 = 68 мм.
следовательно, условие прочности обеспечено.
8.2.4 Расчет на срезУсловие прочности на срез
,
где [фср] = 100 МПа ([2], стр. 74);
следовательно, условие прочности обеспечено.
8.3 Шпоночное соединение тихоходного вала редуктора с ведущей звездочкой цепной передачи
8.3.1 Исходные данные
диаметр вала d = 70 мм
крутящий момент Т = 1511,2 Нм
8.3.2 Выбор шпонкиПредварительно принимаем призматическую шпонку. По диаметру вала выбираем размеры шпонки:
ширина шпонки b = 20 мм,
высота шпонки h = 12 мм,
длина шпонки l = 90 мм,
глубина паза на валу t1 = 7,5 мм,
глубина паза ступицы t2 = 4,9 мм.
8.3.3 Расчет на смятиеУсловие прочности на смятие
где [усм] = 100 МПа ([2], стр. 74);
lр = l - b = 90 - 20 = 70 мм.
следовательно, условие прочности обеспечено.
8.3.4 Расчет на срез
Условие прочности на срез
,
где [фср] = 100 МПа ([2], стр. 74);
следовательно, условие прочности обеспечено.
9. Расчет элементов зубчатых колес редуктора
... – проектный (приближенный) расчет валов на чистое кручение , 2-й — проверочный (уточненный) расчет валов на прочность по напряжениям изгиба и кручения. 1. Определение сил в зацеплении закрытых передач. В проектируемых приводах конструируются червячные редукторы с углом профиля в осевом сечении червяка 2а = 40° .Угол зацепления принят α= 20°. а) на колесе: 1.1 Окружная сила Ft2, Н: Ft2= где T2 ...
... 2. Тип элементов, входящих в изделие и количество элементов данного типа; 3. Величины интенсивности отказов элементов , входящих в изделие. Все элементы схемы ячейки 3 БУ привода горизонтального канала наведения и стабилизации ОЭС сведены в табл. 13.1. Среднее время безотказной работы блока можно рассчитать по формуле: (13.5) где L - интенсивность отказов БУ следящего привода. ...
... по программе, устанавливаемой техническими условиями. Заключение По данным задания на курсовой проект спроектирован привод к скребковому конвейеру, представляющий собой электродвигатель, двухступенчатый цилиндрический косозубый редуктор и сварную раму. В процессе проектирования подобран электродвигатель, произведён расчёт редуктора. Расчёт редуктора включает в себя кинематические расчёты ...
... (3) Угловая скорость выходного вала III тогда составит рад/с, а вала электродвигателя I – рад/с. Общее передаточное отношение привода получится равным: . (4) Для дальнейшего проектирования необходимо произвести распределение передаточного отношения между ремённой передачей и редуктором. Назначаем передаточное отношение редуктора равным ...
0 комментариев