2 Основные параметры коаксиальных кабелей
Коаксиальные кабели характеризуются рядом параметров, которые могут быть разделены на параметры стандартизации, конструктивные, технологические, электрические, механические, климатические, параметры надежности и качества. В группу параметров стандартизации включается марка кабеля, номер технических условий. Конструктивные параметры – это описание материалов, размеров и массы отдельных элементов. К электрическим относятся первичные и вторичные параметры передачи, параметры экранирования. для радиочастотных коаксиальных кабелей наиболее важны электрические параметры: волновое сопротивление Zв, коэффициент затухания a, электрическое сопротивление проводников R, электрическое сопротивление изоляции Rиз, электрическая емкость С, индуктивность С, сопротивление связи Zс, коэффициент отражения, коэффициент стоячей волны (КСВ), неравномерность частотных характеристик затухания и фазы. Для расчета конструкции кабеля, определения его максимальных возможностей помимо диаметра по изоляции и волнового сопротивления надо знать эквивалентную диэлектрическую проницаемость, диаметр внутреннего проводника. Характерные значения эквивалентной диэлектрической проницаемости: для сплошной полиэтиленовой изоляции 2,2…2,3, для пористой полиэтиленовой 1,5.
КТВ широко применяются кабели с полужесткими, полугибкими конструкциями внешних проводников. При этом существующая система маркировки кабелей представляется не совсем удачной.
Для кабелей, стандартизированных МЭК, установлены следующие правила маркообразования: сначала учитывается номер стандарта: 96 МЭК (96 IEC), затем волновое сопротивление, округленно диаметр по изоляции и порядковый номер конструкции при данных присоединительных параметрах.
Пример: МЭК 9675-5-1. В указанном примере конструктивные схемы могут быть различны, но в маркировке это не отражается. Следовательно, такая система маркообразования имеет тот же недостаток, что и принятая ГОСТ 1326.0-78.
Во многих стандартах наибольшую известность получила система стандартов MIL-C-17, состоящая из двух разделов:
- общие требования и методы испытания MIL-C-17-F;
- частные спецификации на отдельные маркоразмеры кабелей.
Пример: М17/152-00001. Здесь М17 – индекс стандарта; 152- трехзначный порядковый номер использования по техническим условиям.
Данная система чисто порядковая – в марке отсутствуют особенности, определяющие электрические и конструктивные признаки кабеля. Все зарубежные фирмы-производители радиочастотных кабелей поставляют кабели в соответствии с требованиями MIL-C-17.
Радиочастотные кабели используются не самостоятельно, а в комплекте с оборудованием СКТВ. Это особенность комплектующих изделий и приводит к необходимости стандартизации присоединительного параметра. Указанный параметр – важнейший показатель, указывающий на возможность соединения кабеля как с активной (усилителем), так и с пассивной (ответвителями, разветвителями) аппаратурой КТВ. В понятие «присоединительный параметр» входят волновое сопротивление и диаметр по изоляции. Последний определяет ряд параметров кабеля и прежде всего такие важные, как коэффициент затухания и номинальная мощность. фактически из стандартизированного ряда используются коаксиальные кабели со следующими значениями диаметра по изоляции, мм: 3,7; 5,6; 7,25; 9,0; 11,5; 13,0; 17,3 ; 24,0.
При проектировании и эксплуатации систем необходимо располагать значениями параметров кабелей. Приведем заимствованные из /2/, /3/ формулы для расчета основных характеристик и справочные материалы по кабелям, используемые РС.
Волновое сопротивление Zв=.
Для коаксиального кабеля коэффициент затухания, дБ/км:
, (8)
Для кабелей с проводниками, выполненными из меди, коэффициент затухания, дБ/км:
, (9)
где D1 – диаметр внутреннего проводника, мм;
D3 - внутренний диаметр внешнего проводника, мм;
mа, mв – магнитная проницаемость материала диэлектрика;
f – частота, Гц;
r а, r в – удельное сопротивление материалов соответственно внутреннего и внешнего проводников;
tg d - тангенс угла диэлектрических потерь материала изоляции.
Температурная зависимость коэффициента затухания:
, (10)
где a20 – коэффициент затухания при температуре 20 °С, дБ;
aa - температурный коэффициент затухания;
t - рабочая температура, °С.
Значения температурного коэффициента затухания приведены в таблице 2. Экранное затухание Аэ=20 lg (1/1,03*104*Zсв), дБ, где Zсв – сопротивление связи.
Таблица 2 - Значения температурного коэффициента затухания
Коэффициент затухания на частоте 200 МГц | ||
Кабель | при приемке и поставке, не более, дБ/100 м | Температурный на частоте 200 МГц при t=50…+50С, промиле/град |
РК 75-17-13С | 4,6 | 2 |
РК 75-11-11С | 6,2 | 2 |
Модуль сопротивления связи обычно нормируют по частоте 30 МГц, зависимости сопротивления связи для кабелей, имеющих внешний проводник из оплетки и медной ленты, приведены на рисунке 1.
Коэффициент укорочения определяется диэлектрической проницаемостью диэлектрика и составляет 1,51 для кабелей со сплошным полиэтиленом и 1,23 – с пористым.
Рисунок 1- Зависимость от частоты сопротивления связи кабелей с внешними проводниками: 1 – из медной ленты; 2 – из оплетки
Для магистральных и распределительных кабелей значения затухания приведены в таблице 2, где указаны также значения температурного коэффициента затухания.
Следует отметить, что в соответствии с (8) и (9) зависимость коэффициента затухания кабелей пропорционально . Это позволяет рассчитать затухание кабеля при нормировании его лишь на одной частоте. пусть известно, что на частоте f1=200 МГц затухание отрезка кабеля a1 = 50 дБ. Требуется найти его затухание на частоте f2=100 МГц. В соответствии с (1) искомое значение =33,5 дБ. Температурная зависимость коэффициента затухания кабелей определяется (3). на рисунке 2 приведены зависимости коэффициента затухания магистрального кабеля длиной 1 км при разных температурах. На частоте 50 МГц изменение затухания этого кабеля составляет 3,2 дБ, а на частоте 200 МГц 7 дБ, т.е. разность изменений затухания в диапазоне температур –50…+50С равна 3,8 дБ.
Рисунок 2- Характеристики затухания магистрального кабеля при разных температурах
... tср.= +8о=10,36[1+1,96 10-3(8 о-20 о)] =10,12 дБ; tср.расч=+8,5о=10,36[1+1,96 10-3(8,5 о-20 о)]=10,13 дБ; Lном.уу = 3 = 2,99 км. Разработка схемы организации связи Проектом предлагается организовать 3600 каналов тональной частоты (ТЧ). Для организации данного числа каналов предусматривается установка одной Системы передачи К-3600. Проектируемая магистраль разбивается ...
0 комментариев