ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ
РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра радиоуправления и связи
КУРСОВАЯ РАБОТА
По дисциплине "Антенны и устройства СВЧ"
"ЛИНЕЙКА ИЗ РУПОРНЫХ АНТЕНН"
Выполнила ст. гр. 511
Бражникова Т.М.
Руководитель
Рендакова В.Я.
Рязань, 2008
Содержание
Введение
Анализ технического задания и выбор метода расчета
Расчет одиночного рупора
Расчет диаграммы направленности антенны
Расчет фазирующей секции
Описание конструкции
Заключение
Список литературы
Введение
Волноводно-рупорные антенны являются простейшими антеннами СВЧ-диапазона.
Они могут формировать диаграммы направленности шириной от 100-140о (при раскрыве специальной формы) до 10-20о в пирамидальных рупорах. Возможность дальнейшего сужения диаграммы рупора ограничивается необходимостью резкого увеличения его длины.
Волноводно-рупорные антенны являются широкополосными устройствами и обеспечивают примерно полуторное перекрытие по диапазону. Возможность изменения рабочей частоты в еще больших пределах ограничивается возбуждением и распространением высших типов волн в питающих волноводах. Коэффициент полезного действия в рупорах высокий (около 100%). Рупорные антенны просты в изготовлении.
Недостатками рупорных антенн являются: а)громоздкость конструкции, ограничивающая возможность получения узких диаграмм направленности; б) трудности в регулировании амплитудно-фазового распределения поля в раскрыве, которые ограничивают возможность снижения уровня боковых лепестков.
Рупорные излучатели могут применяться как самостоятельные антенны или в качестве элементов более сложных антенных устройств.
Анализ технического задания и выбор метода расчета
По техническому заданию на курсовую работу требуется спроектировать линейку из рупорных антенн. В качестве одиночного излучателя используется пирамидальный рупор.
Примем следующие обозначения: параметры рупора, рассчитываемые в Н-плоскости, будем обозначать индексом 1; параметры рупора, рассчитываемые в Е-плоскости, будем обозначать индексом 2. На рис. 1 обозначены: а1,а2 – размеры раскрыва рупора; h1, h2 – длины рупора; θ1, θ2 – углы раскрыва рупора.
Будем использовать следующую методику расчёта рупорного излучателя. По заданной рабочей частоте выберем возбуждающий волновод. По заданным размерам раскрыва рупора найдем коэффициент направленного действия одиночного излучателя и его геометрические размеры. При выборе длины рупора учтем два условия.
1) Максимум КНД рупора заданной длины достигается при определенном значении величины фазовых искажений. Такой рупор называют оптимальным. Пирамидальный рупор оптимален, если максимальные искажения в Н-плоскости составляют 135о, а в Е-плоскости – 90о.
, откуда
, откуда . [1]
2) Для пирамидального рупора найденные длины могут быть различными и не совместимыми. Поэтому необходимо обеспечить правильную стыковку рупора с волноводом.
Для расчета диаграммы направленности пользуются интегральными выражениями [3]:
,
.
Эти формулы для расчета поля излучения рупоров сравнительно сложны и расчет по ним получается трудоемким. Для оптимального рупора, фазовые искажения которого не превышают максимально допустимых, расчет можно проводить по формулам
,
,
которые не приводят к существенным погрешностям[3].
Диаграмма направленности сложной антенны определяется произведением двух множителей: диаграммы одного излучателя Fизл(θ) на множитель решетки Fn(θ) [1]:
.
Требуется, чтобы антенна возбуждала поле с вращающейся поляризацией.
Для этого установим в раскрывах рупоров фазирующие секции.
По заданию необходимо обеспечить работу антенны в синфазном и несинфазном режиме. Если все излучатели питаются синфазно, то луч направлен по нормали к линии расположения излучателей. При несинфазном режиме работы фаза токов излучателей в направлении оси Y изменяется по линейному закону.
Изменение разности фаз полей излучателей, обусловленное изменением разности фаз их токов, ведет к изменению направления максимального излучения антенны. Если основной лепесток ДН множителя при отклонении луча будет выходить за пределы основного лепестка ДН одного излучателя, то уровень боковых лепестков резко увеличится. Поэтому возьмем максимальное отклонение ДН антенны от нормали к ее поверхности равное ширине ДН ее излучателей по мощности по уровню 0,7.
φmax = φ0,7изл
Электрическое управление положением антенного луча будем осуществлять при помощи фазовращателей, которые обеспечивают изменение сдвига по фазе между токами в излучателях антенны.
Качество антенн характеризуется коэффициентом усиления антенны, равным произведению КНД на коэффициент полезного действия антенны. Для рупорных антенн можно считать, что мощность потерь значительно меньше мощности излучения, благодаря чему КПД антенны можно принять равным единице[1].
Расчет одиночного рупора
Рассчитаем длину волны λ и волновое число k:
,
где с= 3*108 м/с – скорость света.
,
.
Выбор размеров поперечного сечения прямоугольного волновода производится из условия распространения в волноводе только основного типа волны Н10:
По полученному значению λ выберем волновод марки R100 c размерами a*b=22.86*10.16 мм.
Рассчитаем коэффициент направленного действия рупора:
,
.
Найдем значения оптимальных длин рупора в плоскостях E и H:
,
.
Используем уравнение стыковки рупора с волноводом[1]:
h1 (1-a/a1) = h2 (1-b/a2).
Чтобы фазовые искажения в раскрыве не превысили допустимых, большее значение длины h принимаем за постоянное число и выражаем меньшее значение через большее:
,
Рассчитаем углы раскрыва рупорной антенны:
,
.
Рассчитаем и построим ДН рупора.
а) В плоскости Е
, .
Рис. 3. Диаграмма направленности рупора в плоскости Е
Ширина ДН по уровню 0,5: φ0,5 = 5,4о.
б) В плоскости H
,
.
Рис. 4. Диаграмма направленности рупора в плоскости Н
Ширина ДН по уровню 0,5: φ0,5 = 4,9о
Расчет диаграммы направленности антенны
... рупорных антенн: 1. , без учёта фазовых искажений ДН пирамидального рупора в "Е" - плоскости, без учёта фазовых искажений ДН множителя системы: ДН множителя системы: ДН линейной решётки рупорных антенн в "Е" - плоскости, без учёта фазовых искажений: 2. , с учётом квадратурных фазовых искажений ДН пирамидального рупора в "Е" - плоскости, с учётом ...
... если направления векторов и в пространстве могут быть определены в любой момент времени. Если же направления и изменяются во времени случайным образом, то волна называется неполяризованной. Для радиосвязи естественно использовать поляризованные волны, что даёт возможность эффективного приёма радиосигналов при известном законе изменения и в пространстве. Виды поляризации различаются законом ...
... , реконструкция и техническое перевооружение действующих РРЛ на базе использования новейших достижений науки и техники. 1.1 Обзор аппаратуры Назначение: КУРС – комплекс унифицированных радиорелейных систем связи – предназначен для построения экономичных, высококачественных и надежных радиорелейных линий, отвечающих всем требованиям построения сети связи с учетом её развития. В рамках этого ...
0 комментариев