2. Механика Ньютона как динамическая теория: основные идеализации, структура, методология

Современным своим видом классическая механика обязана Ньютону (1642 – 1727). В своем фундаментальном труде, содержащем в русском переводе на 700 страниц, Ньютон изложил систему законов механики, закон всемирного тяготения, дал общий подход к исследованию различных явлений на основе «метода принципов», т.е. работа имела не только большое научное, но и большое методологическое значение. Для Ньютона было очень важно наследие его предшественников: «Если я видел дальше других, то потому, что стоял на плечах гигантов.». Среди этих гигантов в первую очередь следует назвать Галилея и Кеплера.

Вначале интересы молодого Ньютона лежали в области оптики, и особенно экспериментальной оптики, в которой он проявил особый изобретательский дар и технические способности. По мере того как с годами интерес его к экспериментированию ослаблялся и одновременно росло увлечение вопросами теории, Ньютон от оптики постепенно перешел к вопросам механики. Работы Ньютона отличаются обобщением принципа инерции и понятия силы, введением понятия массы и распространением области применимости законов механики на всю Вселенную. Он первый сформулировал законы движения и закон тяготения. Они фигурируют сейчас в любой книге по физике и достаточно известны.

Первый закон Ньютона гласит: существуют системы отсчёта (называемые инерциальными), в которых замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения.

По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции.

Инерциальная система отсчёта - это система отсчёта, связанная со свободным невращающимся телом. Свободное тело — тело, не взаимодействующее с другими телами.

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к телу силой и ускорением этого тела.

Второй закон утверждает, что ускорение, которое получает тело, прямо пропорционально приложенной к телу силе и обратно пропорционально массе тела. Этот закон записывается в виде формулы: \vec a=\vec {F} / m , где \vec a— ускорение тела, \vec {F}— сила, приложенная к телу, а m — масса тела. Или, в более известном виде: \vec {F}= m\vec a

Если на тело действуют несколько сил, то во втором законе Ньютона под \vec {F}подразумевается равнодействующая всех сил.

В случае, если масса тела меняется со временем, то второй закон Ньютона записывается в более общем виде: \frac{d(m\vec \upsilon)}{dt} = \vec {F}, где m\vec \upsilon— импульс (количество движения) тела, t — время, а \frac{d}{dt}— производная по времени. Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

В данном законе как частный случай заключен первый закон Ньютона. Это можно видеть если \vec {F}= 0 (т.е. если на тело не действуют силы или равнодействующая сил равна нулю) при этом соответственно получаем что и \vec a= 0, а значит, тело сохраняет состояние покоя или равномерного прямолинейного движения.

Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению.

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:


{m {v}_1^2 \over 2} + {m {v}_2^2 \over 2} + U(|{r}_1 - {r}_2|) = const.

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

Закон всемирного тяготения

Закон всемирного тяготения Ньютона, один из универсальных законов природы. Согласно ему все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от физических и химических свойств тел, от состояния их движения, от свойств среды, где находятся тела. На Земле тяготение проявляется прежде всего в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землей. С этим связан термин «гравитация» (от лат. gravitas — тяжесть), эквивалентный термину «тяготение». Проще говоря, если все тела притягиваются к Земле, море притягивается к Луне, а планеты притягиваются к Солнцу, то мы можем заключить, что все тела притягиваются друг к другу.

Провозглашая этот закон, Ньютон не намеревается определять причину притяжения: "Причину этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю (hypotheses non fingo). Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам и вполне достаточно для объяснения всех движений небесных тел и моря"...

Методология

В работах Ньютона раскрывается его методология и мировоззрение исследований. Свой метод познания сам Ньютон характеризует следующим образом: «Вывести два или три общих принципа движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных принципов, было бы очень важным шагом в философии, хотя бы причины этих принципов и не были еще открыты». Под принципами Ньютон подразумевает наиболее общие законы, лежащие в основе физики. Этот метод после был назван методом принципов, требования к исследованию Ньютон изложил в виде четырех правил:

1. Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений.

2. Одинаковым явлениям необходимо приписывать одинаковые причины.

3. Независимые и неизменные при экспериментах свойства тел, подвергнутых исследованию, надо принимать за общие свойства материальных тел.

4. Законы, индуктивно найденные из опыта, нужно считать верными, пока им не противоречат другие наблюдения.

3. Детерминизм как фундамент классического мировоззрения

Термин мировоззрение (миросозерцание), означает систему обобщенных взглядов на мир и место человека в нем, на отношение людей к окружающей их действительности и самим себе, а также обусловленные этими взглядами их убеждения, идеалы, принципы познания и деятельности. Выделяют три основных типа мировоззрения: житейское (обыденное) мировоззрение, в котором отражаются представления здравого смысла, традиционные взгляды о мире и человеке; религиозное мировоззрение, связанное с признанием сверхъестественного мирового начала; философское мировоззрение, в котором обобщается опыт духовного и практического освоения мира. На основе рационального осмысления культуры философии вырабатывает новые мировоззренческие ориентации. Носитель мировоззрения личность и социальная группа, воспринимающие действительность сквозь призму определенной системы взглядов. Имеет огромный практический смысл, влияя на нормы поведения, жизненные стремления, интересы, труд и быт людей.

Вплоть до начала нынешнего столетия в науке господствовала возникшая в Новое время система мышления, основанная на идеях И. Ньютона и Р. Декарта, которая в последствии стала классической. Их учения отбросили один очень важный момент - фигуру Бога. Рационально-механистический образ мира, сформировавшийся в трудах последователей, демонстрирует нам мир как единый и единственный: мир твердой материи, подчиненный жестким законам. Сам по себе он лишен духа, свободы, благодати, он безмолвен и слеп. Понятая действительность - гигантские космические просторы, в которых движутся по четким траекториям массы материи - не несет в себе никакой необходимости появления человека и сознания. Человек в этом мире - ошибка, описка, курьезный случай. Он - побочный продукт звездной эволюции. Лишенная Бога и сознания Вселенная, не живет, а существует без смысла и цели, более того, всякий смысл для нее - ненужная роскошь, разрушающаяся под влиянием закона энтропии.

Механистическая Вселенная состоит из атомов - маленьких неделимых частиц, обладающих постоянной формой и массой и связанных таинственным законом тяготения. Она организована в трехмерное пространство классической эвклидовой геометрии. Это пространство абсолютно, постоянно и всегда находится в покое. Оно представляет собой большое вместилище тел, само по себе нисколько от них не завися, и лишь предоставляя им возможность перемещения под воздействием силы притяжения. Точно так же время являет собой чистую длительность, оно абсолютно, автономно и независимо от материального мира. Однородным и неизменным потоком течет оно из прошлого через настоящее в будущее. В целом Вселенная предстает как огромный, полностью детерминированный часовой механизм, в котором действует непрерывная цепь взаимосвязанных причин и следствий. Если бы можно было получить точную информацию о каждом звене этой цепи, то стало бы вполне возможным совершенно точно реконструировать любую ситуацию прошлого и предсказывать события будущего без всяких погрешностей.

Весь мир представляется в виде комплекса механических систем, развивается без участия какого бы то ни было сознания и разума. Вся его история, начиная от «большого взрыва» до сегодняшнего дня - результат слепого и стихийного движения материальных масс. Жизнь зарождается в первозданном океане случайно, как результат беспорядочных химических реакций, и пойди процесс чуть по-другому, сознание никогда не проявилось бы в бытие. С физикалистской точки зрения появление жизни и сознания - не только загадка, но и явление достаточно странное, абсурдное, так как оно противоречит второму началу термодинамики, утверждающему, что всякая сложная система неуклонно стремится стать простой, но не наоборот.


Заключение

 

Результатом развития классической механики и принципов детерминизма явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики. Согласно механической картине мира, если физическое явление мира можно было объяснить на основе законов механики, то такое объяснение признавалось научным. Механика Ньютона, таким образом, стала основой механической картины мира. Эта причинно-механическая картина мира дала представление о мире, согласно которому все явления вызываются причинами и оцениваются в соответствии с законами (классической) механики. Сложившаяся еще в эпоху Просвещения, когда из области естественных наук была изгнана метафизика. Открытая в то время всеобщность причинной связи позволяла сделать предположение, что каузальный закон (закон причинности) является всеобщим законом природы а достижения техники давали основание считать, что все подчинено законам механики. Отсюда и пошел принцип детерминизма, содержащий ответ на вопрос, обусловлены ли явления мира в своем существовании и развитии, имеет ли эта обусловленность регулярный, упорядоченный или произвольный, неупорядоченный характер. Другими словами на вопрос о том, выступает ли мир в своем существовании и развитии как упорядоченный Космос или неупорядоченный хаос.


Список использованной литературы

 

1. «Большая Советская Энциклопедия» в 30 томах. под ред. Прохорова А.М., 3 издание, том 17: М:., Советская энциклопедия, 1974.

2. Гурский И.П. «Элементарная физика». М.: Наука, 1984.

4. ДорфманЯ.Г. «Всемирная история физики с начала XIX до середины XX вв» М., 1979.

5. Лихин А.Ф. «Концепции современного естествознания»: учеб - М.: изд.Проспект, 2004.

6. «Ньютон и философские проблемы физики XX века». под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 1991.

7. Огородников В.П, "Познание необходимости. Детерминизм как принцип научного мировоззрения". 1985

8. "Философский словарь". Пер. с нем. Ред. Г.Шмидт.

 


Информация о работе «Концепция детерминизма в классическом естествознании»
Раздел: Биология
Количество знаков с пробелами: 26037
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
508393
2
1

... инерциальных системах отсчета. Пространственно-временной континуум – неразрывная связь пространства и времени и их зависимость от системы отсчета. Тема 11. Основные концепции химии   1. Химия как наука, ее предмет и проблемы Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К ...

Скачать
51560
0
0

... , исходным пунктом естествознания (и науки в целом) как систематического исследования реальной действительности. Наука как целостный феномен возникает в Новое время вследствие отпочкования от философии и проходит в своем развитии три основных этапа: классический, неклассический, постнеклассический (современный). На каждом из этих этапов разрабатываются соответствующие идеалы, нормы и методы ...

Скачать
35573
0
0

... не к самому опыту, а к пониманию опыта и, следовательно, не могут быть опровергнуты никаким возможным опытом [1].   3. Идеи детерминизма в науке и философии XVI-XIX вв Поскольку причины того или иного явления не всегда удается установить, а механицизм так же не всегда может объяснить разнообразные явления, в XIX веке господствующее положение приобрело философское учение под названием " ...

Скачать
157302
0
0

... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...

0 комментариев


Наверх