6. Параметры и относительное изменение напряжения трансформатора
Потери короткого замыкания
Вт,
т.е. на 0,3% больше заданного, что допустимо [4].
Активная составляющая напряжения короткого замыкания
%;
Приведенное расстояние между обмотками
см;
Коэффициент, учитывающий переход от средней линии магнитных силовых линий потоков рассеяния к высоте обмоток
;
Средняя длина витка обмоток 1 и 2
см;
Индуктивная составляющая напряжения короткого замыкания
%;
Напряжение короткого замыкания
%,
т.е. на 3,5% больше задания, что допустимо.
Активное сопротивление обмотки 1
Ом;
Активное сопротивление обмотки 2
Ом;
Активная составляющая сопротивления короткого замыкания, приведенная к числу витков обмотки 1
Ом;
Индуктивная составляющая сопротивления короткого замыкания, приведенная к числу витков обмотки 1
Ом;
Процентное изменение напряжения при номинальной нагрузке (β= 1) и
cos φ = 0,8
%.
7. Механические силы в обмотках при коротком замыкании
Установившийся ток к. з. в обмотках
А;
А;
Максимальное значение тока к. з. в обмотке 2
А;
Суммарная радиальная сила при к.з.
кг;
Разрывающее напряжение в проводе обмотки 2
кг/см2,
что допустимо. Допустимое напряжение для алюминия σ ≤600…700 кг/см2
8. Расчет магнитной системы трансформатора
Принимаем: запрессовка стержней сердечника выполнена клиньями между сердечником и обмоткой 1, сердечник без каналов [4];
Ширина пакетов стержней сердечника:
см;
см;
см;
см;
см;
см;
Толщина пакетов стержня сердечника (в сердечнике нет каналов):
см;
см;
см;
см;
см;
см;
Площадь поперечного сечения ступенчатой фигуры стержня сердечника
см2;
Площадь поперечного сечения стали стержня сердечника
см2;
Магнитная индукция в стали стержня сердечника
Тл.
Коэффициент увеличения площади поперечного сечения стали ярма
kя=1,05; [4]
Поперечное сечение стали ярма
см2;
Магнитная индукция в стали ярма
Тл;
Высота ярма сердечника
;
см;
Толщина ярма перпендикулярно листам стали
см.
Наружный диаметр обмотки 2
см;
Расстояние между осями стержней сердечника
см;
Длина ярма сердечника
см;
Длина стержней сердечника
см;
Вес стали стержней сердечника
кг;
Вес стали ярем сердечника
кг;
Полный вес стали сердечника
кг.
Вес металла обмоток
кг;
Отношение веса стали к весу металла обмоток
.
Потери в стали сердечника (потери холостого хода) [5]
где
Gу= Gс.у.+ Gя.у.= γSс•2b1+ γSя•2b1
Gу =7,6•216•2•17,19•10-3+7,6•226•2•17,19•10-3=56,4+59,1=115,5 кг;
Ку=1,5, [5]
P10=1,75 Вт/кг; P10я=1,57 Вт/кг; [4]
т.о.
Вт;
т.е. на 4% больше заданного, что допустимо.
Сборка сердечника – впереплет.
Число эквивалентных магнитных зазоров в сердечнике крайней фазы с магнитной индукцией Вс
;
Число эквивалентных магнитных зазоров в сердечнике крайней фазы с магнитной индукцией Вя
;
Амплитуда намагничивающего тока крайней фазы обмотки 1
где awc – удельные магнитодвижущие силы (МДС) в стержне; [4]
awя – удельные МДС в ярме; [4]
δэ – длина эквивалентного воздушного зазора в стержне и ярме при сборке сердечника в переплет, δэ = 0,005 см [4].
А;
Число зазоров в сердечнике средней фазы с магнитной индукцией Вс
;
Число зазоров в сердечнике средней фазы с магнитной индукцией Вя
;
Амплитуда намагничивающего тока средней фазы обмотки 1
А;
Среднее значение амплитуды намагничивающего тока для трех фаз
А.
Реактивная составляющая фазного тока холостого хода обмотки 1
А.
где kA1 – коэффициент амплитуды, зависящий от магнитной индукции и вида стали.
Реактивная составляющая фазного тока холостого хода по упрощенному методу расчета
где σс – коэффициент учитывающий соединение обмоток на стороне питания, σс=1 если обмотки соединены в треугольник или звезду с нулевым проводом, σс=1…0,92 если на стороне питания обмотки соединены в звезду без нулевого провода;
ррс – удельная реактивная мощность намагничивания листовой электротехнической стали, ррс = 22…44;
рδс – удельная реактивная мощность намагничивания мест сопряжения стальных листов рδс = 1,8…2,7 при В=Вс;
рδя – удельная реактивная мощность намагничивания мест сопряжения ярма
рδя = 1,7…2,2 при В=Вя.
А;
Реактивная составляющая линейного тока холостого хода по упрощенному методу расчета
А.
Активная составляющая фазного тока холостого кода обмотки 1
А;
Фазный ток холостого хода
А;
Линейный ток холостого хода обмотки 1 , т. к. соединение «звезда».
Линейный ток холостого хода в процентах от номинального тока
%,
т.е. на 2% больше заданной величины, что допустимо.
9. Коэффициент полезного действия
Коэффициент полезного действия при номинальной нагрузке и cos φ = 0,8
%;
Кратность тока нагрузки, при которой коэффициент полезного действия максимальный
;
Максимальное значение КПД при cos φ2 = 0,8
%.
Заключение
Проектирование трансформаторов включает в себя расчет и их конструирование. В данной курсовой работе рассматривался только расчет силового трехфазного трансформатора с масляным охлаждением мощностью 400 кВА напряжением 10/0,4 кВ.
На основе задания и исходных данных выбираем трехфазный масляный трансформатор, соответствующий требованиям ГОСТ 11677, ГОСТ 11920, ГОСТ-15150, марки ТМГ-400/10–0,4 – У1 – трансформатор трехфазный силовой масляный герметичного исполнения (без маслорасширителя) общего назначения мощностью 400 кВ-А с естественным масляным охлаждением, с напряжением на высокой стороне 10 кВ, на низкой – 0,4 кВ, климатического исполнения для умеренного климата.
Библиографический список
1. Беспалов, В.Я. Электрические машины [Текст]: учебник / В.Я. Беспалов [и др.]. – М.: Академия, 2006. – 313 с.
2. Ванурин, В.Н. Электрические машины [Текст]: учебник / В.Н. Ванурин. – М.: Энергия, 2006. – 380 с.
3. Епифанов, А.П. Электрические машины [Текст]: учебник / А.П. Епифанов. – М.: Лань, 2006. – 263 с.
4. Тихомиров, П.М. Расчет трансформаторов [Текст]: учебник / П.М. Тихомиров. – М.: Энергия, 1976. – 544 с.
5. Дымков, А.М. Расчет и конструирование трансформаторов [Текст]: учебник / А.М. Дымков. – М.: Высш. шк., 1971. – 264 с.
6. Сергеев, П.С. Проектирование электрических машин [Текст]: учебник / П.С. Сергеев, Н.В. Виноградов, Ф.А. Горяинов. – М.: Энергия, 1969. – 632 с.
7. Ермолин, Н.П. Расчет силовых трансформаторов [Текст]: пособие по курсовому проектированию / Н.П. Ермолин, Г.Г. Швец. – Л.: ЛЭТИ, 1964. – 167 с.
... , (%). (4.7) 5. РАСЧЕТ МАГНИТОПРОВОДА Основные размеры и данные стержня магнитной системы—его диаметр и высота, активное сечение — приближенно определяются в начале расчета трансформатора до расчета обмоток. Окончательный расчет магнитной системы обычно проводится после того, как установлены размеры обмоток трансформатора и главных изоляционных промежутков и проверены некоторые параметры ...
... (таб.2.2) сердечники пригодны для изготовления трансформатора с заданными исходными параметрами. 2.2.1 Приняли: l0 =l0макс=0,7. 2.2.2 Из стандартного ряда (табл. 2.2, [1]); Таблица 2.2. Данные для расчета трансформаторов, выполненных на сердечниках различного размера из стандартного ряда при l0= 0.7. № сердеч. Тип сердечника Pp*, Вт/(Тл*кГц)2 Sт, см2 Vт, см3 ...
... BК £ Iтерм2 ×tтерм Выбор разъединителей. Разъединители используют для включения и отключения обесточенных участков электрической цепи под напряжением. Выбор разъединителей производится по тем же параметрам что и выключатели, кроме условия по отключающей способности. [3] В соответствии с перечисленными условиями (1.1 - 1.5) выбираем на стороне 10 кВ разъединитель РЛНД - 10/200 ...
... ; up/===4,938% kq=1+=1+1,001; Реактивная часть напряжения КЗ: up=kq·up/=1,001·4,828=4.943% Напряжение КЗ: uk= = =5,079% =1,6% - отклонение от заданного значения. 5.5. Определение механических сил в обмотках Для трансформаторов мощностью менее 1,0 МВА действующее значение наибольшего установившегося тока КЗ: IкуВН=656,291 А; kmax= – по таблице 7.3 [1], коэффициент учитывающий ...
0 комментариев