3. Физические характеристики морской воды
Температура воды
В верхних слоях океанов температура определяется климатическими условиями. Высокая температура воды наблюдается в экваториальных широтах, особенно у берегов. К полюсам она уменьшается до 2-3° и даже опускается ниже нуля. На больших глубинах температура меняется от 1 до +3°, а в полярных частях океанов опускается до -1,9°. Переход от верхнего слоя воды с высокой температурой к нижнему слою с низкой температурой совершается в относительно тонком слое, который называется термоклинным. Этот слой приблизительно совпадает с изотермой 8-10 и находится на глубине 300-400 м в тропиках и 500-1000 м в субтропиках. Указанная закономерность нарушается в местах различных течений.
Давление и плотность
Давление в океанах увеличивается с глубиной, нарастая на каждые 10 м столба на 1 атмосферу. Наибольшей величины оно достигает в глубоких котловинах ложа Мирового океана и особенно в глубоководных впадинах (от 800 до 1100 атмосфер, в соответствии с глубинами впадин). В условиях больших давлений и низкой температуры в глубинах океанов увеличивается растворяющая способность морской воды.
Плотность воды в Мировом океане изменяется в горизонтальном направлении и по вертикали. На поверхности океана она изменяется в соответствии с климатической зональностью. Эти изменения связаны с изменением солености (чем больше в воде растворенных солей, тем она плотнее), или изменением температуры (чем ниже температура, тем выше плотность воды). У экватора плотность воды соответствует величине около 1,02204 . По мере удаления от экватора вследствие сильного испарения и связанного с этим повышение солености плотность воды увеличивается. Максимального же значения – соответствующего 1,02750 (27,5) она достигает в высоких широтах (около 60° с. ш. и 60° ю. ш.).
4. Циркуляция морской воды
Циркуляция воды в Мировом океане имеет большое геологическое значение, определяя интенсивность разрушительного воздействия на берега и дно, разнос и дифференциацию осадочного материала по дну водоема. Циркуляция воды бывает трех видов:
а) волнения;
б) приливы и отливы;
в) течения
Волнения вызываются воздействием на водную поверхность. В этом случае частицы воды в открытом море перемещаются по замкнутым кругом орбитам в вертикальной плоскости. Волны состоят из чередующихся между собой валов и впадин. Вершины валов называются гребнями, а основания впадин – подошвами. Высота волн зависит от силы ветра. Приближаясь к берегу, волна на мелководье захватывает всю толщу воды и испытывает трение о дно. Происходит деформация волны вследствие того, что у подошвы из-за трение о дно частицы воды движутся медленней, чем на гребне. В результате увеличивается крутизна переднего склона волны, и она опрокидывается, образуя прибой. Волновые движения при сильных штормах наблюдаются не только на поверхности, но и распространяются в глубину до 50-150 м. Периодически в океанах возникают также огромные волны, называемые цунами, связанные с землетрясениями.
Приливы и отливы - периодические вертикальные колебания уровня океана или моря, являющиеся результатом изменения положений Луны и Солнца относительно Земли в совокупности с эффектами вращения Земли и особенностями данного рельефа и проявляющееся в периодическом горизонтальном смещении водных масс. Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как приливные течения, делающие предсказание приливов важным для прибрежной навигации.
Интенсивность этих явлений зависит от многих факторов, однако наиболее важным из них является степень связи водоёмов с мировым океаном. Чем более замкнут водоём, тем меньше степень проявления приливо-отливных явлений.
Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, приливные силы, порождаемые Луной, почти вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не от величины гравитационного поля, а от степени его неоднородности (градиента). При увеличении расстояния до источника поля градиент уменьшается быстрее, чем величина самого поля. Поскольку Солнце почти в 400 раз дальше от Земли, чем Луна, то и приливные силы, вызываемые солнечным притяжением, слабее.
Также, одной из причин возникновения приливов и отливов, является суточное (собственное) вращение Земли, увлекающее массы воды мирового океана, имеющего форму эллипсоида, большая ось которого не совпадает с осью вращения Земли и не участвует в её вращении вокруг этой оси. Это ведёт к тому, что в системе отсчёта, связанной с Земной поверхностью, по океану бегут по взаимно противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся, явлениям отлива, чередующихся с приливами.
Таким образом, ключевыми моментами в объяснении приливо-отливных явлений являются:
1. суточное вращение Земного шара;
2. деформация покрывающей земную поверхность водной оболочки, превращающей её в эллипсоид;
3. несовпадение его большой оси с осью вращения Земли.
Отсутствие одного из этих факторов исключает возможность появления приливов и отливов.
При объяснении причин приливов обычно внимание обращается лишь на второй из этих факторов. Но расхожее объяснение рассматриваемого явления только действием приливных сил неполно. Так, в случае совпадения упомянутых выше осей, приливно-отливные явления наблюдаться, как периодическое явление, не будут, сколь бы велики ни были приливные силы.
Приливная волна, имеющая форму упомянутого выше эллипсоида, представляет собой суперпозицию двух «двугорбых» волн, образовавшихся в результате гравитационного взаимодействия планетной пары Земля — Луна и гравитационного взаимодействия этой пары с центральным светилом — Солнцем с одной стороны. Кроме того, фактором, определяющим образование этой волны, выступают силы инерции (не путать с центробежными силами), имеющими место при обращении небесных тел вокруг общих для них центров масс.
Ежегодно повторяющийся приливо-отливный цикл остаётся неизменным вследствие точной компенсации сил притяжения между Солнцем и центром масс планетной пары и силами инерции, приложенными к этому центру.
Однако такая компенсация для водной оболочки Земли в силу её разной удалённости от Луны (и Солнца) оказывается нарушенной. На стороне, обращённой к Луне (Солнцу) преобладают силы гравитации, а на противоположной — силы инерции.
Возникающие при этом приливные силы компенсируются силами собственного гравитационного поля небесных тел.
Поскольку положение Луны и Солнца по отношению к Земле периодически меняется, меняется и интенсивность результирующих приливо-отливных явлений.
Постоянные морские течения наблюдаются на значительных площадях Мирового океана. Они связаны с различиями в плотности морской воды, зависящей от температуры и солености, с постоянно дующими ветрами (пассатами и муссонами) и другими факторами. Скорости морских течений меняются в достаточно широких пределах.
Таблица 1
Основные течения Мирового океана
Течение | Океан | Характеристика |
Агульясово (Игольного мыса) | Индийский | Теплое |
Аляскинское | Тихий | Теплое |
Антильское | Атлантический | Теплое |
Бенгальское | Атлантический | Холодное |
Берингово | Тихий | Теплое |
Бразильское | Атлантический | Теплое |
Гвианское | Атлантический | Теплое |
Гвинейское | Атлантический | Теплое |
Гольфстрим | Атлантический | Теплое |
Гренландское | Северный Ледовитый | Холодное |
Западных Ветров | Тихий, Индийский | Холодное |
Ирмингера | Атлантический | Теплое |
Калифорнийское | Тихий | Холодное |
Камчатское | Тихий | |
Канарское | Атлантический | Холодное |
Кромвелла | Тихий | |
Курильское | Тихий | Холодное |
Куросио (Японское) | Тихий | Теплое |
Лабрадорское | Атлантический | Холодное |
Ломоносова | Атлантический | Экваториальное противотечение |
Мадагаскарское | Индийский | Теплое |
Мозамбикское | Индийский | |
Муссонное | Индийский | Нейтральное |
Норвежское | Северный Ледовитый | Теплое |
Нордкапское | ||
Перуанское (Гумбольдтово) | Тихий | Холодное |
Северо-Атлантическое | Атлантический | Теплое |
Сомалийское | Индийский | Теплое |
Флоридское – южная часть Гольфстрима | Атлантический | Теплое |
Фолклендское | Атлантический | Холодное |
Цусимское | Тихий | Теплое |
Шпицбергенское | Северный Ледовитый | Теплое |
Южное Пассатное | Тихий, Индийский | Теплое |
Северное Пассатное | Тихий | Теплое |
Севоро-Тихоокеанское | Тихий | Теплое |
Морские течения перемещают во взвесях большое количество обломочного материала, не только илистого, но и мелкопесчаного, и взмучивают донные осадки.
море дно разрушительный аккумулятивный
... реки иногда омолаживаются, когда вследствие тектонических движении повышается уровень земли, увеличивая уклон потока. Помолодевшие реки прокладывают новые и глубокие долины. Возможно, самым ярким примером деятельности рек является Большой Каньон па юго-западе США. Это огромное ущелье в скале протянулось на 450 км, а максимальная глубина каньона, обрывающегося в воды Колорадо, составляет 1,6 км. ...
... времени множество их для науки утрачено. Тем большая возникает необходимость в сохранении наиболее интересных из оставшихся. Многие валуны, разбросанные по территории области, объявлены геологическими памятниками природы местного значения. Часть из них имеют имена собственные (Бизон, Старик, Черепаха, Лунный камень и др.). 3. Кристаллические породы у деревни Щелейки В Подпорожском районе, ...
... и кривой вертикальных колебаний суши можно составить историю геологического развития района. Общие положения Данная работа выполняется с целью выявления и обоснования инженерно-геологических условий с возможным строительством гидроузла в данной местности. На основании геологических данных по буровым скважинам и карте №9 по разрезу II-II пробуренных на глубины до 183.5 метров на расстоянии от ...
... рядом разломов. Эта структура возникла уже в раннемеловое время после того, как остаточные синклинальные прогибы южной части Крыма замкнулись, и произошло общее поднятие поверхности. В геологической истории Крымских гор можно выделить два этапа: докембрийско-палеозойский и мезозойско-кайнозойский (альпийский). О первом этапе из-за недостатка знаний можно судить лишь предположительно. Второй этап ...
0 комментариев