3. Функции и роль подстилки в экосистеме
3.1 Экологическая роль лесных подстилок в миграции техногенных загрязнителей
Исследования миграции радиоактивных веществ показали, что после их поступления на поверхность лесной подстилки их поведение определяется химической природой и физико-химическим состоянием радионуклидов в выпадениях, а также строением и мощностью самой подстилки.Наиболее тесная зависимость аккумулирующей способности подстилки наблюдается от ее мощности, причемв интервале до 3.5-4.0 см. В интервале4-6 см эта связь ослабевает, а с 6 см - дальнейшее увеличение мощности подстилки (в реальном промежутке времени) не сказывается на ее удерживающей способности по отношению к радионуклидам(Shcheglov et al., 2001).Среди фитоценозов максимальная удерживающая способность подстилки отмечается в хвойных сообществах, особенно в мертвопокровных сосняках и ельниках - зеленомошниках с развитым моховым покровом и подстилкой типа мор или модер - мор, а также у приствольных повышений. В этих ценозах последнее обусловлено несколькими причинами: 1) Слабой трансформацией опада в составе подстилки и незначительным смешиванием с минеральной массой. Последнее и большая мощность подстилки приводят к нарушению капиллярных связей ипередвижения влаги и веществ в толще почв и, следовательно, способствуют аккумуляции радионуклидов в подстилке. 2)
Аккумулирующей ролью микобиоты, которая в хвойных ценозах развита в наибольшей степени по сравнению с другими БГЦ. Мицелий грибов является депо по отношению к радионуклидам, в нем может аккумулироваться до 60% общих запасов 137Csв лесных почвах(Olsen,1990; Орлов и др., 2001 и др.).
В связи с этим рольгрибного комплекса в биогеохимическом цикле 137Cs в лесной экосистеме значительно превосходит вклад высших растений (Shcheglov et al.,2001).3) Развитием мохового покрова. В БГЦ с хорошо выраженным моховым покровом лесная подстилка характеризуется более высокой удерживающей способностью, поскольку мхи являются растениями – накопителями радиоактивных элементов, и тем самым они сдерживают их миграцию в ландшафтах.
В лесах, где преобладает лиственный опад, и формируется маломощная неполнопрофильная подстилка, ее аккумулирующая роль невелика. Здесь подстилка слабо выражена ипрактически полностью состоит из свежего растительного опада, который довольно быстро перерабатывается почвенной биотой. В этих ценозах отмечается наиболее интенсивная миграция радионуклидов в минеральную толщу. Также невелика удерживающая способность подстилки в лесных гидроморфных ландшафтах, характеризующихся близостью качественного состава и сложения подстилки с торфяным горизонтом.
Вместе с тем даже у хорошо выраженных полнопрофильных подстилок удерживающая способность ее подгоризонтов неодинакова. На начальных этапах после поступления радиоактивных веществ на поверхность почвы более 90% их суммарного количества сосредоточивается в верхнем листовом слое подстилки O1 и мало зависит от типа БГЦ.
В последующем самоочищение и перераспределение радионуклидов в различных слоях лесной подстилки характеризуются неодинаковой динамикой и интенсивностьюи определяется различнымиведущими процессами. Для подгоризонта О1 таким процессом является поступление на поверхность почвы относительно более чистого растительного опада, для О2 и О3 - скорость трансформации органического вещества.
В связи с этим наибольшая скорость самоочищения с выраженной однонаправленной динамикой отмечается в верхнем листовом слое О1.
Период полуочищения для 137Cs составляет около 2-х лет, вследствие чего в О1 уже к 4-5 году после выпадений содержание 137Cs достигает уровня, близкого к квазиравновесному состоянию,- около 1% от его суммарных запасов. В ферментативном и гумифицированных подгоризонтах подстилки динамика запасов 137Cs не столь однозначна. Она характеризуется периодами их нарастания до определенного максимума, затем снижения и стабилизации на соответствующем уровне в зависимости от типа БГЦ, ландшафтно-экологических условий и слоя подстилки.
Уничтожение подстилки при дезактивационных работах или ее сгорании при пожарах приводит к резкому усилению миграционных потоков радиоактивных элементов в почвенном профиле. Однако при низовых пожарах, когда воздействию огня подвергается лишь под горизонт О1,а нижележащие О2 и О3 сохраняют свои сорбирующие функции, значимого перераспределения активности в почве, в том числе и внутри этих слоев, не происходит.
Удерживающая способность подстилки остается на уровне 60-70% от суммарной активности. В этих условиях также не происходит существенного роста содержания подвижных форм радионуклидов в почвах. С увеличением интенсивности пожаров возрастает степень выгорания подстилки, и ситуация усугубляется.
Вследствие значительных потерь массы подстилки вминеральную часть почвы поступает 60-80%общих запасов содержащихся в ней радионуклидов. Такая картина их распределения при естественном течении миграционных процессов могла бы сложиться через 30-50 лет.
При полном выгорании подстилки заглубление активности в минеральную толщу достигает практически 100%.
Данные территории наиболее опасны в радиоэкологическом отношении, поскольку интенсивность миграционных процессов в этих условиях максимальна и возрастает вероятность поступления в грунтовые воды значимых количеств радионуклидов. При аэральных выпадениях на лесные биогеоценозы элементов-загрязнителей другой природы (ТМ) лесная подстилка также аккумулирует их основное количество.
3.2 Функции лесной подстилки
Выделение азота лесной подстилкой. Некоторая часть поглощенного деревьями азота возвращается в почву из лесной подстилки. Поддержание плодородия лесных почв частично зависит от возврата азота и минеральных питательных веществ при разложении подстилки. Листья и ветви, ежегодно пополняющие лесную подстилку, могут приносить до нескольких тысяч фунтов органического материала, содержащего приблизительно 1% азотистых веществ.
Лесная подстилка является регулятором теплового режима. С одной стороны, она плохо проводит тепло из-за наличия в ней большого количества воздуха и влаги, а с другой - обладает и значительной теплоемкостью: снижает суточные колебания температуры, содействует сохранению тепла, уменьшает промерзание почв грунта.
В смешанных и сложных лесных насаждениях опада накапливается больше, чем в чистых однопородных. Опад хвои разлагается в 2-3 раза медленнее опада листвы. Примесь опада лиственных к опаду хвойных пород ускоряет разложение лесной подстилки и способствует процессу гумификации, вследствие чего быстрее и эффективнее повышается плодородие лесных почв.
Исследованиями установлено, что лесная подстилка хорошо защищает почву от заиления водопроводящих скважин, что способствует поглощению талых и дождевых вод и погашению поверхностного стока.
Подстилка обладает свойством удерживать значительное количество влаги, примерно в 1,5-2 раза больше своей массы. Она предохраняет почвогрунты от смыва и размыва путем замедления скорости движения поверхностных вод и перевода их во внутрипочвенный сток.
Регулируя состав лесообразующих пород, подлеска и напочвенного покрова, можно направленно изменять свойства, химический состав лесной подстилки и интенсивность процессов ее минерализации, улучшая плодородие почвы.
Слой почвы, покрытый подстилкой, защищает почвогрунт от вредного влияния ультрафиолетовых лучей, губительно действующих на микроорганизмы, большая часть которых развивается в верхних почвенных слоях.
Из лесной подстилки поступает в почву много водорастворимых органических веществ, которые являются питательным материалом для микрофлоры в минеральных слоях почвы, а также для деревьев и кустарников. Кроме того, из подстилки в почву поступают минеральные продукты питания - карбонаты, фосфаты, сульфаты, нитраты. При удалении подстилки вымывание питательных веществ из почвы усиливается, а следовательно, происходит ее обеднение важнейшими элементами питания - азотом, фосфором и калием.
Сбор лесной подстилки и вывоз ее наносит лесу вред, нарушая естественный круговорот веществ и энергии в лесном биогеоценозе. Лесные пожары, рубки, очистка мест рубок изменяют мощность и качественные особенности лесной подстилки.
Заключение
Лесная подстилка играет важную роль в обменных процессах лесных экосистем. Поэтому изучение ее формирования имеет большое теоретическое значение.
В данной работе было рассмотрено образование лесной подстилки, которая формируется под пологом леса из продуктов опада надземных ярусов лесного биоценоза.
Природа подстилки, ее накопление, формирование, последующие превращения зависят от количества опада, его состава, времени поступления; климатических, почвенных и биотических факторов. Лесная подстилка накапливается постепенно, по мере увеличения опада она достигает большой мощности. Запас лесной подстилки зависит от географических условий, видового состава лесообразующих пород, возраста и ярусности насаждения, сомкнутости лесного полога, развития живого напочвенного покрова. Наибольшие запасы накапливаются в таежной зоне, особенно в северной и средней подзонах тайги.
Лесная подстилка играет значительную роль в лесном биоценозе, являясь местообитанием полезной микрофлоры и микрофауны, участвует в гумусообразовании, предохраняет почву от уплотнения, сокращает испарение влаги.
Литература
1. Богатырев Л.Г. Образование подстилок – один из важнейших процессов в лесных экосистемах // Почвоведение, 1996. № 4. С. 501-511.
2. Богатырев Л.Г. О классификации лесных подсти-лок // Почвоведение,1990. № 3. С. 118-127.
3. Вишнякова З.В., Корсунов В.М. Биологические процессы в лесных почвах Сибири Красноярск, 1980.
4. Мелехов И.С. Лесоведение / И.С. Мелехов. - М.: Изд. МГУЛ, 1999г. 398с.
5. Гаджиев И.М. Эволюция почв южной тайги Западной Сибири. Новосибирск, Наука,1977.
6. География и генезис почв Сибири./Отв. ред. Ковалев Р.В. Новосибирск, 1976.
7. Горбачев В.Н., Дмитриенко В.К., Попова Э.П. Почвенно-экологические исследования в лесных биогеоценозах. Новосибирск, 1982.
8. Горбачев В.Н., Попова Э.П. Почвенный покров южной тайги Средней Сибири. Новосибирск, 1992.
9. Карпачевский Л.О. Лес и лесные почвы. М., Лесная промышленность, 1981.
10. Попова Э.П. Азот в лесных почвах. Новосибирск, 1983.
... ему животных, способствовать увеличению их численности, ограничивать размножение вредителей сельского хозяйства, переносчиков и возбудителей болезней. В нашей стране заботе о животном мире придается важное государственное значение Роль животных в почвообразовании еще больше, чем у растений, связана с их биогеоценологической деятельностью. Академик С. С. Шварц считал, что эволюция организмов ...
... " г. Сочи куртина 64 23,3±0,49 34,7±1,5 6,3±0,28 2,8±0,25 4,67±0,12 4,67±0,12 Таксационные показатели были обработаны на ЭВМ методом вариационной статистики (приложение №4). 7. Опыт интродукции сосны крымской и проект ее внедрения в лесные культуры в Лооском лесхозе Впервые сосна крымская была введена в культуру в Англии в 1790 году семенами полученными от академика Полласа. В ...
... квартал №46. Самой богатой почвой - перегнойно-глеевая песчаная на флювиогляциальных песках, которая занимает наибольшую площадь из всех представленных у нас почв. 5. Влияние почвенного плодородия на продуктивность лесообразующих пород Рациональное ведение лесного хозяйства определяется экологическими требованиями пород лесообразователей к почвенно-грунтовым условиям, обеспечивая при этом ...
... (возвращаемых с спадом) зольных элементов и азота (в кг/га). В целях унификации принята десятибалльная шкала числовых показателей. 3 Лесной тип биологического круговорота 3.1. Различия степных и лесных экосистем Энергетические затраты на первичную продукцию и в целом на биогеоценотические процессы возрастают от среднетаежных растительных формаций к подтайге и широколиственным лесам, а ...
0 комментариев