Основные свойства электрофицируемых механизмов гидротехни­ческих сооружений

Разработка логической схемы управления двустворчатых ворот судоходного шлюза
123264
знака
9
таблиц
0
изображений

1.3. Основные свойства электрофицируемых механизмов гидротехни­ческих сооружений.

Электрифицируемые механизмы гидротехнических сооружений работают в условиях, отличающихся влажностью ( 100%), большими перепадами температуры ( 20-50оС ),значительными колебаниями нагрузки и дли­тельными перерывами в работе ( при шлюзовании и особенно в межнави­гационный период ). Для обеспечения безаварийной работы эти меха­низмы должны быть достаточно прочными, долговечными и надежными в эксплуатации. Кроме того, они должны иметь высокие технико-экономи­ческие показатели.

Перечисленные требования распространяются и на электрическое оборудование.

Главные нагрузки, действующие на электроприводы основных меха­низмов гидротехнических сооружений, создаются:

собственным весом перемещаемых устройств;

давлением воды и ветра на них.

Кроме этого, могут возникнуть случайные нагрузки, вызванные на­валом свободно плавающих предметов и шлюзуемых судов, обледенением, ледоходом и т. п.

Указанные нагрузки, веса устройств, не остаются неизменными в процессе работ, поэтому все расчеты выполняются для двух возможных их сочетаний: основного и особого. В основное сочетание включают нагрузки, действующие постоянно при работе механизма, в особое - главные и случайные ( удары топляков, заклинивание, ледоход и т. п.). Сочетания нагрузок выбирают в соответствии с практической воз­можностью одновременного их воздействия как на привод в целом, так и на отдельные его элементы. Нагрузки определяют для статического и динамического режимов работы.

По действующим в системе нагрузкам рассчитывают соответствующие им моменты и суммированием последних вычисляют результирующие мо­менты сопротивления движению Мс.

При определении момента сопротивления нагрузки от навала свобод­но плавающих предметов и шлюзуемых судов, а также от обледенения и ледоходов можно не учитывать, пологая их выходящими за пределы мак­симального момента привода и регламентирующими лишь прочность конс­трукции электрифицируемого устройства.

При этом например, для двустворчатых ворот с тросовыми, цепными, штанговыми и штангово-цепными передачами моменты ( в Н*м ) от дейс­твующих нагрузок приближенно будут такими:

а) от веса системы ( момент трения в пяте и гвльсбанде )

Мтр=23Fиfrи+Fгfrг,

где Fг и Fи - реакция в пяте и гальсбане, Н;

f - коэффициент трения;

rи, rг - радиус пяты и гальсбана, м;

б) от гидростатического и гидродинамического давления воды на створку

Мг=0,5Yhl2Dh+0,15rhl2*q2

где Y - вес единицы объема воды, Н/м3;

h - заглубление створки, м;

l - длинна створки, м;

Dh - перепад уровней воды, м; r - плотность воды, кг/м3: q - скорость движения створки, м/с:

в) от действия ветра

Мв=Fвl/2,

где Fв - сила ветра,действующая на створку, Н;

l - длина створки, м.

Момент сопротивления будет равен

Мстргв.

В динамическом режиме работы, кроме перечисленного, учитывают дополнительный момент ( в Н*м ) от сил инерции створки:

Ми=Jw/t,

где J - момент инерции створки, кг*м2;

w - угловая скорость движения створки, с-1;

t - время динамического режима, с;

Момент сопротивления движению подъемно-опускных ворот ( затворов ) создается главным образом весом ворот и сопротивлением трения в опорно-ходовых и закладных частях. Составляющие момента сопротивле­ния ( в Н*м ) можно определить следующим образом:

а) от собственного веса ворот ( затвора )

Мв=GRб,

где G - вес ворот с тяговым устройством, Н;

Rб - радиус барабана подъемной лебедки, м;

б) от трения в опорно-ходовых и закладных частях

Мтр=f1PRб+f2DPRб,

где f1, f2 - коэффициент трения опорного устройства и уплотнения;

P и DP - силы гидростатического давления на ворота и на заклад­ные части, Н.

При этом Мсвтр. Для привода затворов галерей,кроме указанных нагрузок, учитывают момент, создаваемый вертикальным давлением во­ды:

Мверт=YSRб( Hв-fоНн ),

где S - площадь затвора,м2;

Hв, Нн - напор на верхнюю и нижнюю ( выпор ) поверхности затво­ра,м;

fо - коэффициент подсоса.

1.4 Элементы электрического оборудования шлюзов.

Электрическое оборудование, обеспечивающее четкую и надежную ра­боту гидротехнических сооружений, условно можно разделить на три основных группы: силовое электрооборудование приводов, электричес­кие аппараты и системы управления, элементы и устройства электрос­набжения.

1.4.а. Силовое оборудование приводов. К силовому электрооборудо­ванию прежде всего относят электрические двигатели и электрические приводы тормозов.

Электрические двигатели. К электрическим двигателям гидротехни­ческих сооружений предъявляются высокие требования в отношении обеспечение нормальной работы в условиях резких колебаний нагрузки, температуры окружающей среды и повышенной влажности. На гидротехни­ческих сооружениях применялись исключительно крановые электродвига­тели переменного тока с короткозамкнутым и фазным ротором серии МТК и МТ специального исполнения, обладающие достаточно высокой перег­рузочной способностью и механической стойкостью. От обычных они от­личаются тем, что обмотка статора их при изготовлении подвергается вакуумной пропитке изоляционным влагостойким компаундом, а в под­шипниковых щитах имеются вентиляционные отверстия, предназначенные для предотвращения появления конденсата внутри двигателя.

В настоящее время на гидротехнических сооружениях получают расп­ространение и крановые двигатели серий МТКВ МТВ с изоляцией класса В, допускающей увеличение номинальной мощности двигателя при преж­них габаритных размерах.

Из - за отсутствия крановых двигателей необходимой мощности ста­ли применяться двигатели общепромышленного назначения. Однако эти двигатели менее надежны в эксплуатации, хуже работают в условиях гидротехнических сооружений, обладают меньшей перегрузочной способ­ностью.

Режим работы двигателей гидротехнических сооружений, как прави­ло, кратковременный с ярко выраженной цикличностью работы. Продол­жительность цикла в зависимости от вида сооружения и характера ра­боты составляет 30 -60 минут. Продолжительность работы двигателей в цикле при этом колеблется от одной до 6 - 8 минут.

Электрические приводы тормозов. Большинство механизмов гидротех­нических сооружений снабжают тормозами закрытого типа, как правило, колодочными. Тормоза служат для удержания подъемноопускных устройс­тв в поднятом положении, а поворотных в строго фиксированном поло­жении. Кроме того, с помощью тормоза можно сократить тормозной путь

- выбег механизма. Особенно высокие требования предъявляются к тор­моза многодвигателтельных систем, где необходима одинаковая эффек­тивность действия тормозов для сохранения синхронизации и последо­вательности движения элементов.

Для приведения в действие механических тормозов применяются длинноходовые электромагниты серии МО и электрогидравлические тол­катели серии ЭГП.

1.4.б. Электрические аппараты системы управления. Эта группа объединяет аппараты коммутации и защиты, аппараты технологической последовательности и блокировок, контроля и сигнализации. Кроме уп­равления основными механизмами и процессами, специальные системы этой группы аппаратов обеспечивают информацию о состоянии наиболее ответственных элементов и режимах работы и осуществляют регулирова­ние движения судов.

Коммутационные аппараты. Для коммутации силовых цепей гидротех-

нических сооружений применяются в основном электромагнитные контак­торы серии КТ. Бесконтактные ( полупроводниковые ) контакторы тока используют лишь в опытном порядке с тиристорными станциями управле­ния.

Аппараты защиты. На шлюзах применяются максимальная токовая и минимальная защита. Для максимальной токовой защиты двигателей во­рот и затворов обычно используют электромагнитные или индукционные реле максимального тока серии РЭ и ИТ, Для защиты от перегрузок электротепловые реле ТР, для минимальной защиты - реле напряжения.

Реле промежуточное используется для подготовки цепей управления к заданным операциям ( например, цикловому или раздельному управле­нию ). Кроме того, промежуточные реле в некоторых случаях позволяют сократить число контактов, включаемых в цепь управления. Например, вместо того чтобы включить кнопку " Стоп " всех постов управления в цепь управления, можно включить их цепь катушки промежуточного ре­ле. При нажатии любой из этих кнопок размыкаются контакты этих реле в цепи управления и происходит остановка привода. В качестве проме­жуточных реле широкое применение находят реле серии РП.

Реле времени служат для управления контакторами ускорения, а также в других случаях, когда необходимо, чтобы между двумя опера­циями был определенный промежуток времени. Для этих целей на водных путях в основном используются электромеханические реле с приводом на переменном токе и электромагнитные реле времени постоянного то­ка.

Кнопки и ключи управления применяются общего назначения, рассчи­танные на работу в условиях повышенной влажности.

Путевые выключатели. На шлюзах черезвычайно распространены путе­вые выключатели. Они служат для отключения двигателей при достиже­нии затворами конечных и предельных положений, а также для блокиро­вок. Различают путевые выключатели двух типов: блок - аппараты и конечные выключатели. Первые, по своему устройству подобные коман­доконтроллерам, являются средством управления и блокировок в функ­ции пути, а вторые, обычно рычажного типа, устанавливаются для сра­батывания в конце пути.

На гидротехнических сооружениях находят применение и бесконтакт­ные выключатели, работа которых основана на изменении их индуктив­ного или емкостного сопротивления при перемещении подвижного якоря. Такие выключатели малогабаритны, герметичны, с успехом работают в агрессивной среде, и в частности в подводных частях сооружений.

Панели и пульты. Аппаратуру управления и защиты располагают, как правило, на контакторных панелях, собранных из прямоугольных изоля­ционных плит и укрепленных на угловых стойках. Коммутационную аппа­ратуру, реле управления и защиты устанавливают на лицевой стороне с выводом защиты для монтажа с обратной стороны панелей, где находят­ся измерительные трансформаторы и пускорегулирующие резисторы. Раз­мещение чувствительных реле на контактных панелях в непосредствен­ной близости от мощных контакторов имеет существенный недостаток, заключающийся в ложных срабатываниях реле от вибрации, вызываемой включением и выключением контакторов. Поэтому на современных шлюзах чувствительную аппаратуру управления располагают на отдельных пане­лях, называемых панелями автоматики. Командоаппараты и приборы тех­нологического контроля и сигнализации устанавливают в полном объеме на центральном или в сокращенном на местном пультах управления. Все приборы и устройства на центральном пульте управления размещают в соответствии с мнемонической схемой объекта. Центральный пульт на­ходится в отдельном помещении, чтобы обеспечить оператору хорошую видимость объекта. Местный пульт обычно устанавливают непосредс­твенно около управляемого механизма и снабжают запирающейся крыш­кой.

1.4.в Оперативная сигнализация. К числу основных устройств сиг­нализации и контроля относятся устройства производственной ( опера­тивной, поисковой и аварийной ) сигнализаций. Среди них наиболее заметное место занимает оперативная сигнализация.

Для успешной работы оператор шлюза должен иметь возможность в любое время установить, в каком положении находятся ворота и затвор ( насколько они открыты или закрыты ), а также каковы уровни воды в камере и обоих бьефах. Для этой цели применяется оперативная указа­тельная ( индикаторная ) сигнализация. На (рисунке 6,а и б) изобра­жены показатели положения подъемно - опускных и двустворчатых во­рот. Основу указателей составляют сельсины, образующие систему синхронной связи (см. п. 30 ).

С приводом ворот связан ротор сельсина - датчика, который пово­рачивается при их перемещении. При этом поворачивается и ротор сельсина приемника, электрически соединенного с сельсином - датчи­ком. С сельсином - приемником, находящемся на центральном пульте управления, связан указатель, который и отражает положение ворот.

Указатель уровня воды в камере работает следующим образом. На одной из голов шлюза устанавливают колодец, сообщающийся с камерой, в который помещают поплавок, закрепленный на тросе и уравновешенный противовесом. При изменении уровня воды в камере поплавок поднима­ется или опускается, отчего начинает вращаются ролик, охватываемый тросом. Это вращение передается через редуктор сельсину - датчику и через сельсин - приемник отражается на экране стрелочного, ленточ­ного или цифрового указателя. Аналогично работают и указатели уров­ня воды в бьефах.

Как известно, дифференциальный сельсин - приемник позволяет оп­ределить угол рассогласования между роторами двух сельсинов - дат­чиков. Этот принцып положен в основу работы указателей ( индикато­ров ) разности уровней воды в камере, верхнем или нижнем бьефах и указателей перекоса затвора.

Обмотка статора дифференциального сельсина - указателя разности уровней получает питание от ротора сельсина - датчика, угол поворо­та которого зависит от уровня воды в бьефе ( верхнем или нижнем ), а обмотка ротора включена на зажимы ротора датчика, угол поворота которого зависит от уровня воды в камере. Указатель разности уров­ней воды необходим для управления воротами шлюза.

Указатель перекоса предусматривают, если затвор поднимается и опускается с помощью двух механически не связанных двигателей, ус­тановленных на противоположных устоях камеры. Даже при наличие " электрического вала " в таких случаях возможно появление перекоса. Перекос затвора весьма опасен из - за увеличения напряжений в нем и возможности его заклинивания, а также перегрузок электрических дви­гателей.

Статор дифференциального сельсина - указателя перекоса получает питание от ротора сельсина - датчика положения левой стороны затво­ра, а его ротор подключен к ротору сельсина - датчика положения правой стороны затвора. Если перекос превышает заданное максималь­ное значение, цепь управления данным приводом автоматически разры­вается.

Рассматриваемые приборы выполняют не только функции сигнализа­ции, но и контроля. Они имеют контакты, замкнутые при угле рассог­ласования, не превышающем заранее заданного значения, и разомкну­тые, если этот угол больше допустимого. Контакты указателей включа­ются в цепь соответствующих реле, а контакты последних - в цепь уп­равления. На (рисунке 6) приведена принципиальная схема оперативной указательной сигнализации для одного из шлюзов.

На схеме приняты следующие обозначения: ВСВ - датчик уровня воды верхнего бьефа; ВС11 - датчик положения ворот верхней головы; ВС12

- то же, правой стороны; ВЕВ2 - приемник разности уровней воды меж­ду верхним бьефом и камерой; ВЕВ - приемник абсолютного уровня воды верхнего бьефа; ВЕ1 - приемник положения ворот верхней головы; ВЕР1

- приемник перекоса ворот верхней головы; ВС2 - датчик уровня воды в камере; ВСН - датчик уровня воды в нижнем бьефе; ВС31 - датчик положения левой створки ворот нижней головы; ВС32 - датчик положе­ния правой створки ворот нижней головы; ВС41 - датчик положения ле­вого затвора галерей; ВС42 - то же правого затвора галерей; ВЕН2 - приемник разности уровней воды между камерой и нижним бьефом; ВЕН - приемник абсолютного уровня воды в нижнем бьефе; ВЕ31 - приемник положения левой створки ворот нижней головы; ВЕ32 - приемник поло­жения правой створки ворот нижней головы; ВЕ41 - приемник положения затвора левой галереи; ВЕ42 - приемник положения затвора правой га­лереи; KV2 - реле напряжения цепи питания сельсинов; КВ2 - реле разностей уровней воды межу верхним бьефом и камерой; КН2 - реле разностей уровней воды между камерой и нижним бьефом; KV1 - реле перекоса.

Как видно из схемы, в камере, в верхнем и нижнем бьефах, уста­новлено три датчика: ВС2 - датчик уровня воды в камере; ВСВ - дат­чик уровня воды в верхнем бьефе; ВСН - датчик уровня воды в нижнем бьефе, каждый из которых питает ротор обычного сельсина - указателя уровня. Кроме того, каждый из этих датчиков питает одну из обмоток дифференциальных сельсинов, контролирующих разность уровней. Для ворот верхней головы на схеме показано три датчика. Один из них - ВС1 - питает ротор приемника, указывающего положение затвора, два других - ВС11 и ВС12, связанных с левой и правой сторонами ворот, - питают дифференциальный сельсин - указатель перекоса. Что касается двустворчатых ворот и затвора водопроводных галерей, то на каждые створку и затвор установлено по одному датчику, питающему ротор приемника, который указывает положение той или иной створки или затвора.

Указатели разности уровней и перекоса снабжены контактной систе­мой. Контакты указателей включены последовательно с катушками про­межуточных реле разности уровней и перекоса.

Контакты SB2 и SH2 замкнуты при одинаковых уровнях, при неравных разомкнуты. Контакты SP1 замкнуты при перекосе, не превышающем за­данное значение, при большем перекосе они разомкнуты.

Оперативная сигнализация у различных шлюзов устроена неодинако­во. В качестве примера рассмотрим принципиальную схему оперативной ламповой сигнализации (рисунок 8), в которой КВ1 - контакт реле ми­гающего сигнала; SQ1 - SQ3, SQ6 и SQ7 - контакты путевого выключа­теля, замкнутые при открытых затворах ( воротах ); SQ4, SQ5, SQ8, SQ9 - то же, замкнутые при закрытых воротах; KV - контакт реле бло­кировки ворот, замкнутый при закрытых воротах; К12 и К32 - контакты реле разности уровней воды между камерой и верхним и нижнем бьефа­ми, замкнутые при уравненных уровнях. При открытом затворе горит зеленая лампочка Н3, при закрытом - красная НК, при движении затво­ра лампа мигает. Показанные на схеме замыкающие и размыкающие кон­такты являются вспомогательными контактами оперативных аппаратов управления операциями открытия О и закрытия Z затворов ( ворот ).

Пусть, например, ворота верхней и нижней голов шлюза закрыты, затворы водопроводных галерей открыты и уровень в камере выровнен с уровнем нижнего бьефа. В этом случае будут разомкнуты контакты пу­тевого выключателя SQ1, SQ4, SQ5 - SQ7 и замкнуты контакты SQ2, SQ3, SQ8, SQ9. Будут замкнуты замыкающие контакты KV1 и К12 и зак­рыты все показанные на схеме размыкающие контакты. В результате этого будут гореть красные лампы НК3, НК4, НК16 - НК18 и зеленые Н36 - Н39.

Пусть получают питание катушки оперативных контакторов КО1 и КО2, включающие двигатели приводов двустворчатых ворот в сторону открытия. Створки ворот придут в движение. При этом разомкнутся размыкающие контакты КО1 и КО2 и замкнутся замыкающие контакты КО1 и КО2. зеленые лампы НЗ13 - НЗ15 загорятся мигающим светом. Контак­ты путевого выключателя SQ8 и SQ9 разомкнутся, и красные лампы НК16- НК18 погаснут. Когда створки полностью откроются, потеряют питание катушки контакторов КО1 и КО2, откроются замыкающие контак­ты КО1 и КО2 и закроются размыкающие вспомогательные контакты КО1 и КО2. Поскольку при открытых створках контакты SQ6 и SQ7 замкнуты, зеленые лампы горят постоянным светом.

Ответной частью оперативной сигнализации является та часть, ко­торая относится к изменению уровней воды и перепадов. На многих шлюзах эти устройства объединяют в общий водокомандный или водомер­ный прибор. В качестве примера приведена схема комбинированных во­домерных приборов, которые измеряют уровни воды в камерах и бьефах, показывают их отметку и значение напоров на верхние и нижние воро­та.

Комплект водомерного прибора состоит из трех пар сельсинов ВС ( датчик ) и ВЕ ( приемник ). Они работают на исполнительные двигате­ли М через дифференциальную механическую передачу, приводящую в движение счетное цифровое устройство и вспомогательные контакты. Функциональная схема одной пары сельсинов прибора приведена на (ри­сунке 9). Прибор работает по принципу фазового управления, при ко-

тором у исполнительного двигателя нагрузки по току независимо от

угла рассогласования сельсинов всегда остаются примерно одинаковыми

по значению.

Особенностью и ценным свойством прибора является его самосинхро­низация, заключающаяся в способности системы приходить в состояние согласования при появлении электрического питания, если рассогласо­вание произошло при его отсутствие. Это достигается благодаря тому, что предельный угол поворота ( рассогласования ) роторов сельсинов принят меньше 180о . Однако опыт эксплуатации комбинированных водо­мерных приборов показал, что чувствительность их при измерениях пе­репадов уровней 15 - 20 м недостаточна.

Для шлюзов с малым напором а также для бьефов, в которых измене­ния уровня воды сезонные и при шлюзовании не превышают 1,5 - 3 м, можно повысить чувствительность следящей системы при фазовом управ­лении увеличением угла поворота роторов сельсина - датчика и сель­сина - приемника ( в пределах 160о ) на единицу перепада уровня во­ды. Для изменения соотношения перепада воды и угла поворота роторов в этом случае необходимо изменить соответствующим образом переда­точные числа механизмов от поплавка к сельсину - датчику и от ис­полнительного двигателя к сельсину - приемнику и счетному механиз­му.

1.4.г. Поисковая сигнализация. Бесперебойность работы шлюза в значительной степени зависит от того, как быстро будет найдена и ликвидирована неисправность в цепи управления, в результате которой тот или иной привод отказывает в работе. Такой неисправностью часто может быть разрыв цепи управления из - за того, что какой - либо контакт в ней не сработал, то есть оказался разомкнутым. Поскольку таких контактов в схеме электроприводов шлюза очень много, нахожде­ние неисправного контакта без специального устройства, называемым искателем повреждений, представляло бы большую трудность.

Простейший искатель повреждений состоит из коммутатора SA и сиг­нальной лампы HL, включаемых параллельно контролируемой цепи (рису­нок 10). При неисправности контролируемую электрическую цепь прове­ряют поворотом рукоятки искателя, передвигая ползунок по контактам, наблюдают за сигнальной лампой. По положению ползунка в котором за­горается лампа, находят неисправный контакт или участок цепи.

Усовершенствование рассмотренного искателя повреждений является автоматический искатель. У него ползунок перемещается специальным импульсным ( шаговым ) двигателем, который приходит в движение вся­кий раз, когда нарушается блокировочная цепь. Это происходит в ре­зультате замыкания размыкающего контакта контактора или реле, вклю­ченного в цепь блокировки. С помощью шагового двигателя ползунок искателя толчками перемещается с контакта на контакт и при достиже­нии места разрыва останавливается. После восстановления цепи им­пульсный двигатель доводит ползунок до начального, нулевого, поло­жения.

На статоре 1 шагового двигателя (рисунок 11) имеются две обмотки постоянного тока, состоящие из трех катушек каждая. Катушки надеты на сердечник статора. Якорь шагового двигателя 2 имеет два полюса. При включении тока в одну из групп катушек другая группа, против которой находится полюсы якоря, отключаются. В результате якорь по­ворачивается на одно полюсное деление. Затем ток включается в дру­гую группу катушек, а ранее включенная отключается и якорь повора­чивается еще на одно полюсное деление.

Таким образом, посылая ток то в одну, то в другую группу катушек двигателя, получают "шаговое" вращение якоря и ползункового уст­ройства искателя повреждений.

Ползунковые и автоматические искатели имеют существенные недос­таток - от искателя к каждому проверяемому контакту необходимо прокладывать отдельный провод, а это, при значительном числе блоки­ровочных устройств, требует очень много контрольных кабелей. Кроме того, большое количество проводов и контактов, само по себе услож­няя установку, делает ее менее надежной. В связи с этим было сконс­труировано более совершенное и надежное телемеханическое устройство

- телеискатель.

К элементам, обеспечивающим работу телеискателя (рисунок 12), относятся: реле искателя KV1; реле блокировки KV; линейный контак­тор КМ; размыкающий контакт промежуточного реле максимальной защиты KVA; замыкающий контакт промежуточного реле кнопки "Стоп" KVS; за­мыкающий контакт реле восстановления К1; контакт датчика S, замкну­тый только в нулевом положении SA. При нормальной работе схемы, когда ни одно из максимальных реле не сработало и замкнуты все кон­такты путевых выключателей, контакты KVA, KVS, KV и KM замкнуты, катушки линейного контактора КМ и реле блокировки KV получают пита­ние. При этом подвижной контакт телеискателя SA находится в нулевом положении ( как показано на схеме ), размыкающий контакт КМ разомк­нут и нижняя часть схемы не работает ( реле времени КТ1 - КТ3 обес­точены ).

Если, например, сработает какое либо реле защиты ( пусть К5Н ), сразу же получит питание катушка KVA ( на схеме не показана ), ко­торая разомкнет свой размыкающие контакты. В результате катушка КМ лишается питания и ее замыкающий контакт КМ размыкается, а размыка­ющий контакт КМ замыкается. Аналогичная картина наблюдается при размыкании какого - либо контакта путевого выключателя. В этом слу­чае теряет питание катушка блокировочного реле KV и размыкается за­мыкающий контакт в цепи катушки КМ.

В результате замыкания контакта КМ получает питание катушка КТ1, реле срабатывает и замыкает свои замыкающий контакт КТ1, который замыкает цепь катушки КТ2. Последняя, получив питание, размыкает размыкающий контакт в цепи катушки КТ1 и отключает ее от сети, но сама не теряет питание, так как получает его через контакт КТ1, размыкающийся с выдержкой времени. Кроме того, реле КТ2 замыкает контакты КТ2 и тем самым подготовит к работе реле КТ3 и обеспечит питание первой группы обмоток шаговых двигателей L1M1 и L1M2. Рото­ры обоих двигателей поворачиваются на один шаг, и подвижной контакт комутатора SA переходит в положение 1.

Если контакт К1Н замкнут, через него получает питание катушка KV1, замыкающий контакт которой шунтирует контакт S, размыкающийся при переходе контакта SA с нулевого в первое положение.

Вернемся теперь к работе реле времени КТ1 - КТ3. Поскольку реле КТ2 отключило катушку КТ1, то с выдержкой времени оно само потеряет питание, но при этом замыкается размыкающий контакт КТ1 в цепи ка­тушки реле КТ3. Последнее, сработав, подает питание во вторую груп­пу обмоток шаговых двигателей L2M1 и L2M2. Роторы двигателей пово­рачиваются на следующий шаг, и подвижной контакт коммутатора пере­мещается в положение 2. В связи с тем что катушка КТ2 отключилась, вновь замыкается размыкающий контакт КТ2 в цепи КТ1 и схема прихо­дит в первоначальное положение. Опять срабатывают реле КТ1 и КТ2 и через контакт КТ2 получает питание первая группа обмоток L1M1 и L1M2 и т.д., пока подвижной контакт коммутатора не переместится в положение 5. По принятому выше условию контакт К5Н разомкнут. Поэ­тому реле KV1 теряет питание и катушки КТ1 - КТ3 обесточиваются. Шаговые двигатели останавливаются. Положение подвижного контакта коммутатора указывает место повреждения. Поскольку одинаковое число шагов сделают двигатели датчика и приемника, то указатель, связан­ный с последним, покажет номер разомкнутого контакта в цепи управ­ления.

После устранения неисправности телеискатель вновь начинает рабо­тать и его подвижной контакт доходит до последнего положения ( на схеме положение 15 ). При восстановлении схемы ( срабатывания реле восстановления и закрытия его замыкающего контакта К1 ) подвижной контакт коммутатора перемещается в нулевое положение и схема иска­теля опять готова к работе. Датчик искателя находится непосредс­твенно у механизма, а его приемник - на центральном пульте управле­ния. Датчик и приемник соединены двумя проводами.

1.4.д. Светофорная сигнализация. Светофорная сигнализация шлюзов может быть различной по количеству светофоров и числу огней в них. На (рисунке 13) приведена одна из возможных схем расстановки свето­форов для однокамерного шлюза. В пределах камеры вблизи каждых во­рот устанавливают двузначные выходные светофоры Н13, Н23. Зеленый огонь разрешает выход из камеры, красный запрещает его. Вен камеры, в непосредственной близости от нее, у каждых ворот размещают вход­ные светофоры Н12, Н22. Кроме того, на каждом бьефе на расстоянии 400 - 600 метров от камеры располагают светофор дальнего действия Н11, Н21. Иногда между входным и дальним светофорами устанавливают­ся и промежуточные светофоры. Принципиальная схема управления огня­ми светофоров верхней головы приведена на (рисунке 14).

Светофорами управляют при помощи специальных выключателей S21, S22, S23. При этом цепи питания ламп входных и выходных светофоров сблокированны с соответствующими воротами таким образом, что зеле­ный ( разрешающий ) огонь может быть включен только при полностью открытых воротах.

Из приведенной схемы видно, что при разомкнутых контактах S21, S22 и S23 горят красные огни, так как обесточены катушки реле К1, К3, и К5 и их размыкающие контакты замыкают цепи в первичных обмот­ках трансформаторов. При этом срабатывают катушки реле К2, К4, К6, замыкающие контакты которых включают красные сигнальные лампы на пульте.

Если, например замкнуть контакт S21, то получит питание первич­ная обмотка трансформатора Т1 - загорится зеленый огонь на дальнем светофоре. Включенное последовательно с этой обмоткой реле К1 сра­батывает, размыкаются его размыкающие контакты, которые прерывают ток в первичной обмотке трансформатора Т2. Одновременно замыкаются его замыкающие контакты , которые включают зеленую лампу на пульте управления.

Переключение огней входных и выходных светофоров при цикловом шлюзовании автоматизируется. Это значит, что при открытии соответс­твующих ворот в зависимости от направления шлюзования может автома­тически включатся разрешающий зеленый огонь на входном или выходном светофоре. Чтобы оператор был всегда осведомлен о цвете огней на светофорах и их исправности, на центральном пульте управления уста­навливают лампы, дублирующие огни светофора. Эти лампы включаются таким образом, что при погасании лампы светофора немедленно гаснет соответствующая сигнальная лампа на пульте управления. Для этого последовательно с первичной обмоткой трансформатора, питающего дан­ную лампу светофора, включается катушка одного из чувствительных реле К1 - К6. При нормальной работе светофора ток, текущей по ка­тушке реле, достаточен для того, чтобы закрылись его замыкающие контакты и включили сигнальную лампу. Если нить лампы светофора пе­регорит или произойдет обрыв цепи вторичной обмотки трансформатора, ток, текущий по первичной обмотке трансформатора, уменьшается и за­мыкающие контакты реле разомкнутся.

1.4.е. Элементы и устройства электроснабжения. К числу основных элементов и устройств для обеспечения гидротехнических сооружений электрической энергией относятся: силовые трансформаторы, распреде­лительные устройства снабжением свыше 1000 В, шкафы распределитель­ные силовые и кабельные сети.

Силовые трансформаторы. В качестве силовых трансформаторов на

гидротехнических сооружениях применяются масляные трансформаторы

типа ТМ, осуществляющие трансформацию электрической энергии напря­жения 6, 10, 35 кВ в напряжение приемников электрической энергии, равное 0,4 кВ. Трансформаторы, как правило, с естественным охалож­дением устанавливаются в ячейках специальных помещений, находящихся в непосредственной близости от приемников электрической энергии. В полу ячеек размещают маслоприемник для слива масла в случае аварии с трансформатором, которые засыпают крупным гравием и щебнем. Для отбора пробы масла в нижней части трансформатора предусматриваю специальный отборный кран. Для изменения выходного напряжения сило­вого трансформатора в процессе эксплуатации на +5% предусматривает­ся возможность переключения обмоток в обесточенном состоянии транс­форматора.

Распределительные устройства напряжением свыше 1000 В. Для уп-

равления трансформаторами, питающимися и отходящими линиями приме­няются распределительные устройства ( РУ ) напряжения до 1000 В. В ячейках этих устройств устанавливают коммутационные защитные, изме­рительные и сигнальные устройства. В качестве коммутационных аппа­ратов используются шинные и линейные разъединители, выключатели нагрузки и масляные выключатели. Коммутационные аппараты снабжают ручным и двигательным приводом. Наиболее распространенным типом привода на трансформаторных подстанциях гидротехнических сооружений является привод ПРБА рычажный с блинкером срабатывания, максималь­ной и минимальной защитой, действующей на отключение. Для систем с автоматическим отключением резерва ( АВР ) применяется привод дис­танционного управления типа УГП - универсальный грузовой привод с автоматической защитой. На гидротехнических сооружениях используют РУ закрытого исполнения, предназначенные для размещения в отдельных помещениях трансформаторных подстанций или в отдельных помещениях поблизости от силовых трансформаторов.

Шкафы распределительные силовые. Служат для распределения элект­роэнергии от силового трансформатора по группам электроприемников и отдельным крупным приемникам. Силовые распределительные щиты комп­лектуются из стандартных панелей и содержат сборные шины, коммута­ционную аппаратуру, защиту, сигнализацию и контрольно - измеритель­ную аппаратуру. На гидротехнических сооружениях получили распрост­ранение распределительные щиты с двусторонним обслуживанием. На ли­цевой стороне таких щитов размещены приводы коммутационных аппара­тов, измерительные и сигнальные устройства, а токоведущие части расположены на обратной стороне панелей. Широко применяются комп­лектные распределительные щиты закрытого типа, в которых в качестве коммутационной и защитной аппаратуры используются электромагнитные аппараты управления. Распределительные щиты устанавливают в отдель­ном помещении преимущественно вблизи от центрального пульта управ­ления.

Кабельные сети. В качестве распределительных сетей на гидротех-

нических сооружениях применяются электрические кабели. Для силовых

цепей при напряжении до 1000 В преимущественно используются брони­рованные кабели с медными жилами, свинцовой оболочкой и бумажной изоляцией СБТ. Находят применение так - же силовые кабели с алюми­невыми жилами в свинцовой или алюминевой оболочке АСБ и ААБ.

В качестве контрольных кабелей преимущественное распространение получили бронированные кабели со свинцовой или виниловой герметизи­рующей оболочкой с медными жилами КСРБ и КВРБ.

Для присоединения подвижных электроприемников и переносной электроаппаратуры применяются гибкие шланговые кабели с резиновой изоляцией КРПТ, ШРПС и ШРМ.

Удобство монтажа и обслуживания обеспечивает маркировка кабелей и кабельных жил с указанием типа кабеля и назначения жил.


Информация о работе «Разработка логической схемы управления двустворчатых ворот судоходного шлюза»
Раздел: Промышленность, производство
Количество знаков с пробелами: 123264
Количество таблиц: 9
Количество изображений: 0

0 комментариев


Наверх