1.4. Решение задач на зависимость величин разными способами

Решение задачи разными способами, получение из нее новых, более сложных задач и их решение создает предпосылки для формирования у ученика способности находить свой «оригинальный» способ решения задачи, воспитывает стремление вести самостоятельно поиск решения новой задачи, той, которая раньше ему «не встречалась». Широкие возможности в этом плане дают задачи с пропорциональными величинами. Поиск разных путей решения таких задач способствует осознанию причинно-следственных связей, накоплению представлений о функциональной зависимости величин, осуществлению подготовки учеников начальных классов к изучению функций в последующих классах.

Использование прямо и обратно пропорциональных зависимостей величин при решении задач (скорость, время, расстояние, позволяет находить отличные от традиционного способ решения. Поиск другого способа решения задач на основе применения указанной зависимости величин.

Поезд, отправившись со станции А, прошел до станции В за 3ч 210км, после чего он снизил скорость на 10 км/ч. Со сниженной скоростью поезд шел от В до следующей станции С в 2 раза дольше, чем от А до В. Определите расстояние АС.

Задача решается в пять действий:

210:3=70 (км/ч)

 70-10=60 (км/ч)

3*2=6 (ч)

60*6=360 (км)

210+360=570 (км)

Полезно обсудить в классе, возможен ли следующий способ решения: 210*2=420 (км) – время в 2 раза больше, поэтому и расстояние ВС в 2 раза больше, чем АВ; 210+420=630 (км) – расстояние АС.

Выявив причину (скорость изменилась, не является постоянной величиной), по которой нельзя так решать эту задачу, нужно все-таки попытаться найти другой способ решения с использованием прямо пропорциональной зависимости расстояния от времени при постоянной скорости. Предположим, что скорость не изменилась. Тогда расстояние ВС в 2 раза больше, чем АВ, так как время движения от В к С в 2 раза больше (шел дальше). Расстояние ВС было бы рано 210*2=420 (км), но скорость изменилась. Каждый час поезд проходил на 10 км меньше. За 6 часов (3*2) он прошел на 60км меньше (по 10км 6 раз). Следовательно, расстояние ВС на самом деле равно 360км, потому что 420 км нужно уменьшить на 60 км. Остается найти сложением расстояние АС: 210+360=570 (км). Итак, хотя задача решена тоже пятью действиями, но поиск этого способа решения способствует осознанию детьми двух разных по характеру зависимостей величины и поиск новых способов решения задач, основанных на тех же зависимостях.

Возможны еще два способа решения задачи:

2-ой способ 3-ий способ

210*2=420 (км)

210+420= 630 (км)

3*2=6 (ч)

10*6= 60 (км)

630-60 = 570 (км)

10*3= 30 (км)

210-30= 180 (км)

180*2= 360 (км)

210+360= 570 (км)

Если ученики не смогут найти какой-либо из данных способов решения задачи, учителю следует записать их на доске и предложить детям объяснить, что найдено в каждом действии, проверить возможность решения задачи такими способами.

Полезно также упростить условие (пусть скорость не изменяется, остается постоянной), предложить решить задачу одним действием и указать «лишние» данные.

А__________________В______________________________С

При постоянной скорости расстояние ВС больше АВ в 2 раза. Весь путь АС в № раза больше, чем АВ (210 км). Решение 210*3=630 (км), а 3 часа лишнее данное.

1.5. Составление задач с величинами: скорость, время, расстояние по выражению

Составление задач по выражению

Задача №591 (Ш класс, школа 1-3)

Задание: Составить задачу с величинами - скорость, время, расстояние по выражениям: (45+52)*4; 36:(5+4).

При выполнении задания можно использовать краткую запись в виде чертежа, выполнив одно важное условие: числовые данные следует записывать в чертеж только в ходе беседы.

Случай 1. Выражение (45+52)*4

_____________________________

_____________________________

Рассмотрим чертеж на движение двух видов транспорта и ответим на вопросы:

Что могут обозначать числа 45 и 52?

Что обозначает выражение (45+52)?

Что обозначает число 4?

Что получится, если совместную скорость умножить на время?

Какой вид транспорта может двигаться с такими скоростями? (Катера)

Как двигаются катера?

Как они начнут свое движение? Навстречу друг другу?

Составьте задачу.

Возможная задача: «Их двух пристаней одновременно навстречу друг другу вышли два катера. Скорость одного катера 45 км/ч, другого – 52 км/ч. Какое расстояние между пристанями, если встреча произошла через 4ч?

 

Случай 2. Выражение 36: (5+4)

Вариант I

 

_____________________________

_____________________________

Рассмотрим чертеж. Какие величины нужно использовать при составлении задачи?

Что может обозначать число 36?

Что могут обозначать числа 4 и 5?

Кто может двигаться с такой скоростью?

Что обозначает выражение (4+5)?

О каком виде движения будет задача?

Что обозначает все выражение?

Сформулируйте вопрос задачи?

Возможная задача: «Из двух населенных пунктов навстречу друг другу вышли два пешехода. Один двигался со скоростью 4 км/ч, другой – 5 км/ч. Через сколько часов произошла встреча, если расстояние между пунктами 36 км?»

Вариант II

_____________________________

36 км

_____________________________

Рассмотрим чертеж. Какие величины нужно использовать при составлении задачи?

Что может означать число 36?

Подумайте и скажите, что обозначают числа 4 и 5?

Что обозначает выражение (5+4)?

Что обозначает все выражение?

Кто может двигаться с такой скоростью?

Какая может быть скорость у туристов?

Составьте задачу.

Возможная задача: «Туристы шли с одинаковой скоростью и за 2 дня прошли расстояние 36 км. В первый день они были в пути 4ч, а во второй – 5ч. С какой скоростью шли туристы?»

При решении задач на движение в качестве средств наглядности, как правило, используются схематические чертежи. Однако в некоторых задачах на чертеже не всегда удается показать все величины и связи между ними, а также обозначить вопрос.

Приведем в качестве примера задачу: «Моторная лодка прошла путь от одной пристани до другой за 20 мин со скоростью 625 м/мин. На обратный путь она затратила на 5 мин больше. На сколько меньше была скорость лодки на обратном пути?»

Выяснив, что величины, фигурирующие в задаче – это время, скорость, расстояние, и опорные слова – туда и обратно, выполняется запись в следующем виде:

Расстояние Время Скорость

Туда

Обратно

Одинаковое

20 мин

25 мин

625 м/мин

на?

Далее выясняется, что для ответа на вопрос задачи необходимо найти скорость, с которой лодка двигалась обратно, а для этого нужно знать время и расстояние. Так как расстояние при движении туда и обратно одинаковое, то оно равно 625*20 (м), а скорость равна расстоянию, деленному на время: 625*20:25 (м/мин). Окончательно краткая запись приобретает вид:

Расстояние Время Скорость

Туда

Обратно

Одинаковое

625*20 (м)

20 мин

25 мин

625 м/мин

на?

625*20:25 (м/мин)

Сделав такую запись, учащиеся уже по существу решили задачу, остается лишь выполнить обозначенные в таблице действия. Такую форму краткой записи целесообразно назвать активной.


Информация о работе «Влияние использования схем, чертежей, иллюстраций на формирование ЗУН при обучении младших школьников решению задач на движение»
Раздел: Психология, педагогика
Количество знаков с пробелами: 85724
Количество таблиц: 19
Количество изображений: 0

Похожие работы

Скачать
211131
23
0

... о том, что этому можно и нужно учить. Это особенно важный вывод, поскольку это необходимо не только в сфере художественной дизайнерской деятельности, но и является одной из составных частей общей культуры человека. Формирование элементов дизайнерского мышления не может быть кратковременным процессом или строиться фрагментарно. Для этого должна быть разработана многоуровневая программа, ...

Скачать
147546
4
1

... труда. В связи с этим предусмотрено усиление связи школы с миром труда. 1.4 Содержание технологического образования школьников (анализ раздела, программы и учебников по теме «Элементы машиноведения» 7 класс) Закон «Об образовании», принятый в России в 1992 г., был нацелен на будущее общества и утверждал, что содержание образования должно обеспечивать: формирование у учащихся адекватной ...

Скачать
111831
8
5

... . - № 10. – С. 26-28. 13.  Дроздова Ю.Л. Игра на уроках // Начальная школа Казахстана. – 2003. - № 7. – С. 13-17. 14.  Аржановская Н.В. Урок-путешествие по русскому языку: II класс // Начальная школа. – 2003. - № 8. – С. 43. 15.  Мартынова О.А. Применение технологии УДЕ на уроках русского языка Начальная школа. – 2001. - № 5. – С. 90-94. 16.  Кульневич С.В. Не совсем обычный урок: Практическое ...

Скачать
120580
0
0

... согласовываться с периодами развития определенных кач-в личности, обеспечивать соответствующие целям и задачам информационное наполнение, тесную смысловую взаимосвязь и преемственность возрастных этапов технологической подготовки уч-ся. Содержание второго блока (5-7 классы), с учётом возможностей подростков, включает в себя в кач-ве модулей технологии изготовления конструктивно и технологически ...

0 комментариев


Наверх