1.    Как самостоятельные средства защиты передаваемых и хранимых данных.

2.    Как средства для распределения ключей.

Алгоритмы СОК более трудоемки, чем традиционные криптосистемы. Поэтому часто на практике рационально с помощью СОК распределять ключи, объем которых как информации незначителен. А потом с помощью обычных алгоритмов осуществлять обмен большими информационными потоками. Один из наиболее распространенных - система с открытым ключом - RSA. Криптосистема RSA, разработанная в 1977 году и получила название в честь ее создателей: Рона Ривеста, Ади Шамира и Леонарда Эйдельмана. Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению. Поэтому для любой длины ключа можно дать нижнюю оценку числа операций для раскрытия шифра, а с учетом производительности современных компьютеров оценить и необходимое на это время. Возможность гарантированно оценить защищенность алгоритма RSA стала одной из причин популярности этой СОК на фоне десятков других схем. Поэтому алгоритм RSA используется в банковских компьютерных сетях, особенно для работы с удаленными клиентами (обслуживание кредитных карточек).

             Электронная подпись.

В чем состоит проблема аутентификации данных? В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели. Во-первых, получатель имеет возможность убедиться в истинности письма, сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязательств и т.д. Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами - техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь. С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации. В разделе криптографических систем с открытым ключом было показано, что при всех преимуществах современных систем шифрования они не позволяют обеспечить аутентификацию данных. Поэтому средства аутентификации должны использоваться в комплексе и криптографическими алгоритмами.

             Управление ключами.

Кроме выбора подходящей для конкретной ИС криптографической системы, важная проблема - управление ключами. Как бы ни была сложна и надежна сама криптосистема, она основана на использовании ключей. Если для обеспечения конфиденциального обмена информацией между двумя пользователями процесс обмена ключами тривиален, то в ИС, где количество пользователей составляет десятки и сотни управление ключами - серьезная проблема. Под ключевой информацией понимается совокупность всех действующих в ИС ключей. Если не обеспечено достаточно надежное управление ключевой информацией, то завладев ею, злоумышленник получает неограниченный доступ ко всей информации. Управление ключами - информационный процесс, включающий в себя три элемента:

·     генерацию ключей;

·     накопление ключей;

·     распределение ключей.

Рассмотрим, как они должны быть реализованы для того, чтобы обеспечить безопасность ключевой информации в ИС.

             Генерация ключей.

В самом начале разговора о криптографических методах было сказано, что не стоит использовать неслучайные ключи с целью легкости их запоминания. В серьезных ИС используются специальные аппаратные и программные методы генерации случайных ключей. Как правило используют датчики ПСЧ. Однако степень случайности их генерации должна быть достаточно высоким. Идеальным генераторами являются устройства на основе “натуральных” случайных процессов. Например случайным математическим объектом являются десятичные знаки иррациональных чисел, которые вычисляются с помощью стандартных математических методов.

             Накопление ключей.

Под накоплением ключей понимается организация их хранения, учета и удаления. Поскольку ключ является самым привлекательным для злоумышленника объектом, открывающим ему путь к конфиденциальной информации, то вопросам накопления ключей следует уделять особое внимание. Секретные ключи никогда не должны записываться в явном виде на носителе, который может быть считан или скопирован. В достаточно сложной ИС один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необходимость организации мини-баз данных по ключевой информации. Такие базы данных отвечают за принятие, хранение, учет и удаление используемых ключей. Итак, каждая информация об используемых ключах должна храниться в зашифрованном виде. Ключи, зашифровывающие ключевую информацию называются мастер-ключами. Желательно, чтобы мастер-ключи каждый пользователь знал наизусть, и не хранил их вообще на каких-либо материальных носителях. Очень важным условием безопасности информации является периодическое обновление ключевой информации в ИС. При этом переназначаться должны как обычные ключи, так и мастер-ключи. В особо ответственных ИС обновление ключевой информации желательно делать ежедневно. Вопрос обновления ключевой информации связан и с третьим элементом управления ключами - распределением ключей.

             Распределение ключей.

Распределение ключей - самый ответственный процесс в управлении ключами. К нему предъявляются два требования:

-      Оперативность и точность распределения

-      Скрытность распределяемых ключей.

В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в ИС требует новых эффективных решений. Распределение ключей между пользователями реализуются двумя разными подходами:

1. Путем создания одного ли нескольких центров распределения ключей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены и это позволяет читать все сообщения, циркулирующие в ИС. Возможные злоупотребления существенно влияют на защиту.

2. Прямой обмен ключами между пользователями информационной системы. В этом случае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов. Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA.

 В качестве обобщения сказанного о распределении ключей следует сказать следующее. Задача управления ключами сводится к поиску такого протокола распределения ключей, который обеспечивал бы:

·     возможность отказа от центра распределения ключей;

·     взаимное подтверждение подлинности участников сеанса;

·     подтверждение достоверности сеанса механизмом запроса-ответа, использование для этого программных или аппаратных средств;

·     использование при обмене ключами минимального числа сообщений.

             Реализация криптографических методов.

Проблема реализации методов защиты информации имеет два аспекта:

·     разработку средств, реализующих криптографические алгоритмы,

·     методику использования этих средств.

Каждый из рассмотренных криптографических методов могут быть реализованы либо программным, либо аппаратным способом. Возможность программной реализации обуславливается тем, что все методы криптографического преобразования формальны и могут быть представлены в виде конечной алгоритмической процедуры. При аппаратной реализации все процедуры шифрования и дешифрования выполняются специальными электронными схемами. Наибольшее распространение получили модули, реализующие комбинированные методы. Большинство зарубежных серийных средств шифрования основано на американском стандарте DES. Отечественные же разработки, такие как, например, устройство КРИПТОН, использует отечественный стандарт шифрования. Основным достоинством программных методов реализации защиты является их гибкость, т.е. возможность быстрого изменения алгоритмов шифрования. Основным же недостатком программной реализации является существенно меньшее быстродействие по сравнению с аппаратными средствами (примерно в 10 раз). В последнее время стали появляться комбинированные средства шифрования, так называемые программно-аппаратные средства. В этом случае в компьютере используется своеобразный “криптографический сопроцессор” - вычислительное устройство, ориентированное на выполнение криптографических операций (сложение по модулю, сдвиг и т.д.). Меняя программное обеспечения для такого устройства, можно выбирать тот или иной метод шифрования. Такой метод объединяет в себе достоинства программных и аппаратных методов.

Таким образом, выбор типа реализации криптозащиты для конкретной ИС в существенной мере зависит от ее особенностей и должен опираться на всесторонний анализ требований, предъявляемых к системе защиты информации.

             Идентификация и аутентификация

Идентификацию и аутентификацию можно считать основой программно-технических средств безопасности. Идентификация и аутентификация - это первая линия обороны, "проходная" информационного пространства организации.

Идентификация позволяет субъекту - пользователю или процессу, действующему от имени определенного пользователя, назвать себя, сообщив свое имя. Посредством аутентификации вторая сторона убеждается, что субъект действительно тот, за кого себя выдает. В качестве синонима слова "аутентификация" иногда используют сочетание "проверка подлинности". Субъект может подтвердить свою подлинность, если предъявит по крайней мере одну из следующих сущностей:

-      нечто, что он знает: пароль, личный идентификационный номер, криптографический ключ и т.п.,

-      нечто, чем он владеет: личную карточку или иное устройство аналогичного назначения,

-       нечто, что является частью его самого: голос, отпечатки пальцев и т.п., то есть свои биометрические характеристики,

-      нечто, ассоциированное с ним, например координаты

Главное достоинство парольной аутентификации - простота и привычность. Пароли давно встроены в операционные системы и иные сервисы. При правильном использовании пароли могут обеспечить приемлемый для многих организаций уровень безопасности. Тем не менее по совокупности характеристик их следует признать самым слабым средством проверки подлинности. Надежность паролей основывается на способности помнить их и хранить в тайне. Ввод пароля можно подсмотреть. Пароль можно угадать методом грубой силы, используя, быть может, словарь. Если файл паролей зашифрован, но доступен на чтение, его можно перекачать к себе на компьютер и попытаться подобрать пароль, запрограммировав полный перебор.

Пароли уязвимы по отношению к электронному перехвату - это наиболее принципиальный недостаток, который нельзя компенсировать улучшением администрирования или обучением пользователей. Практически единственный выход - использование криптографии для шифрования паролей перед передачей по линиям связи.

Тем не менее, следующие меры позволяют значительно повысить надежность парольной защиты:

-      наложение технических ограничений (пароль должен быть не слишком коротким, он должен содержать буквы, цифры, знаки пунктуации и т.п.);

-      управление сроком действия паролей, их периодическая смена;

-      ограничение доступа к файлу паролей;

-      ограничение числа неудачных попыток входа в систему, что затруднит применение метода грубой силы;

-      обучение и воспитание пользователей;

-      использование программных генераторов паролей, которые, основываясь на несложных правилах, могут порождать только благозвучные и, следовательно, запоминающиеся пароли.

Перечисленные меры целесообразно применять всегда, даже если наряду с паролями используются другие методы аутентификации, основанные, например, на применении токенов.

Токен - это предмет или устройство, владение которым подтверждает подлинность пользователя. Различают токены с памятью (пассивные, которые только хранят, но не обрабатывают информацию) и интеллектуальные токены (активные).

Самой распространенной разновидностью токенов с памятью являются карточки с магнитной полосой. Для использования подобных токенов необходимо устройство чтения, снабженное также клавиатурой и процессором. Обычно пользователь набирает на этой клавиатуре свой личный идентификационный номер, после чего процессор проверяет его совпадение с тем, что записано на карточке, а также подлинность самой карточки. Таким образом, здесь фактически применяется комбинация двух способов защиты, что существенно затрудняет действия злоумышленника.

Необходима обработка аутентификационной информации самим устройством чтения, без передачи в компьютер - это исключает возможность электронного перехвата.

Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

Как известно, одним из самых мощных средств в руках злоумышленника является изменение программы аутентификации, при котором пароли не только проверяются, но и запоминаются для последующего несанкционированного использования.

Интеллектуальные токены характеризуются наличием собственной вычислительной мощности. Они подразделяются на интеллектуальные карты, стандартизованные ISO и прочие токены. Карты нуждаются в интерфейсном устройстве, прочие токены обычно обладают ручным интерфейсом (дисплеем и клавиатурой) и по внешнему виду напоминают калькуляторы. Чтобы токен начал работать, пользователь должен ввести свой личный идентификационный номер.

По принципу действия интеллектуальные токены можно разделить на следующие категории.

-      Статический обмен паролями: пользователь обычным образом доказывает токену свою подлинность, затем токен проверяется компьютерной системой.

-      Динамическая генерация паролей: токен генерирует пароли, периодически изменяя их. Компьютерная система должна иметь синхронизированный генератор паролей. Информация от токена поступает по электронному интерфейсу или набирается пользователем на клавиатуре терминала.

-      Запросно-ответные системы: компьютер выдает случайное число, которое преобразуется криптографическим механизмом, встроенным в токен, после чего результат возвращается в компьютер для проверки. Здесь также возможно использование электронного или ручного интерфейса. В последнем случае пользователь читает запрос с экрана терминала, набирает его на клавиатуре токена (возможно, в это время вводится и личный номер), а на дисплее токена видит ответ и переносит его на клавиатуру терминала.

             Управление доступом

Средства управления доступом позволяют специфицировать и контролировать действия, которые субъекты - пользователи и процессы могут выполнять над объектами - информацией и другими компьютерными ресурсами. Речь идет о логическом управлении доступом, который реализуется программными средствами. Логическое управление доступом - это основной механизм многопользовательских систем, призванный обеспечить конфиденциальность и целостность объектов и, до некоторой степени, их доступность путем запрещения обслуживания неавторизованных пользователей. Задача логического управления доступом состоит в том, чтобы для каждой пары (субъект, объект) определить множество допустимых операций, зависящее от некоторых дополнительных условий, и контролировать выполнение установленного порядка. Простой пример реализации таких прав доступа – какой-то пользователь (субъект) вошедший в информационную систему получил право доступа на чтение информации с какого-то диска(объект), право доступа на модификацию данных в каком-то каталоге(объект) и отсутствие всяких прав доступа к остальным ресурсам информационной системы.

Контроль прав доступа производится разными компонентами программной среды - ядром операционной системы, дополнительными средствами безопасности, системой управления базами данных, посредническим программным обеспечением (таким как монитор транзакций) и т.д.

             Протоколирование и аудит

Под протоколированием понимается сбор и накопление информации о событиях, происходящих в информационной системе. Например - кто и когда пытался входить в систему, чем завершилась эта попытка, кто и какими информациоными ресурсами пользовался, какие и кем модифицировались информационные ресурсы и много других..

Аудит - это анализ накопленной информации, проводимый оперативно, почти в реальном времени, или периодически.

Реализация протоколирования и аудита преследует следующие главные цели:

-      обеспечение подотчетности пользователей и администраторов;

-      обеспечение возможности реконструкции последовательности событий;

-      обнаружение попыток нарушений информационной безопасности;

-      предоставление информации для выявления и анализа проблем.

6.     Безопасность баз данных

Основной формой организации информационных массивов в ИС являются базы данных. Базу данных можно определить как совокупность взаимосвязанных хранящихся вместе данных при наличии такой минимальной избыточности, которая допускает их использование оптимальным образом для одного или нескольких приложений. В отличие от файловой системы организации и использования информации , БД существует независимо от конкретной программы и предназначена для совместного использования многими пользователями. Такая централизация и независимость данных в технологии БД потребовали создания соответствующих СУБД - сложных комплексов программ, которые обеспечивают выполнение операций корректного размещения данных, надежного их хранения, поиска, модификации и удаления.

Основные требования по безопасности данных, предъявляемые к БД и СУБД, во многом совпадают с требованиями, предъявляемыми к безопасности данных в компьютерных системах – контроль доступа, криптозащита, проверка целостности, протоколирование и т.д..

Под управлением целостностью в БД понимается защита данных в БД от неверных (в отличие от несанкционированных) изменений и разрушений . Поддержание целостности БД состоит в том, чтобы обеспечить в каждый момент времени корректность (правильность) как самих значений всех элементов данных, так и взаимосвязей между элементами данных в БД . С поддержанием целостности связаны следующие основные требования .

1 . Обеспечение достоверности .

В каждый элемент данных информация заносится точно в соответствии с описанием этого элемента .Должны быть предусмотрены механизмы обеспечения устойчивости элементов данных и их логических взаимосвязей к ошибкам или неквалифицированным действиям пользователей .

2 . Управление параллелизмом .

 Нарушение целостности БД может возникнуть при одновременном выполнении операций над данными, каждая из которых в отдельности не нарушает целостности БД . Поэтому должны быть предусмотрены механизмы управления данными, обеспечивающие поддержание целостности БД при одновременном выполнении нескольких операций .

3 .Восстановление .

 Хранимые в БД данные должны быть устойчивы по отношению к неблагоприятным физическим воздействиям (аппаратные ошибки, сбои питания и т .п .) и ошибкам в программном обеспечении . Поэтому должны быть предусмотрены механизмы восстановления за предельно короткое время того состояния БД, которое было перед появлением неисправности .

Вопросы управления доступом и поддержания целостности БД тесно соприкасаются между собой, и во многих случаях для их решения используются одни и те же механизмы. Различие между этими аспектами обеспечения безопасности данных в БД состоит в том, что управление доступом связано с предотвращением преднамеренного разрушения БД, а управление целостностью - с предотвращением непреднамеренного внесения ошибки

.

             Управление доступом в базах данных

Большинство систем БД представляют собой средство единого централизованного хранения данных. Это значительно сокращает избыточность данных, упрощает доступ к данным и позволяет более эффективно защищать данные . Однако, в технологии БД возникает ряд проблем, связанных, например, с тем, что различные пользователи должны иметь доступ к одним данным и не иметь доступа к другим . Поэтому, не используя специальные средства и методы, обеспечить надежное разделение доступа в БД практически невозможно .

Большинство современных СУБД имеют встроенные средства, позволяющие администратору системы определять права пользователей по доступу к различным частям БД, вплоть до конкретного элемента . При этом имеется возможность не только предоставить доступ тому или иному пользователю, но и указать разрешенный тип доступа: что именно может делать конкретный пользователь с конкретными данными (читать, модифицировать, удалять и т . п .), вплоть до реорганизации всей БД Таблицы (списки) управления доступом широко используются в компьютерных системах, например, в ОС для управления доступом к файлам .Особенность использования этого средства для защиты БД состоит в том, что в качестве объектов защиты выступают не только отдельные файлы (области в сетевых БД, отношения в реляционных БД), но и другие структурные элементы БД: элемент, поле, запись, набор данных .

             Управление целостностью данных

Нарушение целостности данных может быть вызвано рядом причин:

-      сбои оборудования, физические воздействия или стихийные бедствия;

-      ошибки санкционированных пользователей или умышленные действия несанкционированных пользователей;

-      программные ошибки СУБД или ОС;

-      ошибки в прикладных программах;

-      совместное выполнение конфликтных запросов пользователей и др .

Нарушение целостности данных возможно и в хорошо отлаженных системах . Поэтому важно не только не допустить нарушения целостности, но и своевременно обнаружить факт нарушения целостности и  оперативно восстановить целостность после нарушения .

             Управление параллелизмом

Поддержание целостности на основе приведенных выше ограничений целостности представляет собой достаточно сложную проблему в системе БД даже с одним пользователем . В системах, ориентированных на многопользовательский режим работы, возникает целый ряд новых проблем, связанных с параллельным выполнением конфликтующих запросов пользователей . Прежде , чем рассмотреть механизмы защиты БД от ошибок, возникающих в случае конфликта пользовательских запросов, раскроем ряд понятий, связанных с управлением параллелизмом .

Важнейшим средством механизма защиты целостности БД выступает объединение совокупности операций, в результате которых БД из одного целостного состояния переходит в другое целостное состояние, в один логический элемент работы, называемый транзакцией. Суть механизма транзакций состоит в том, что до завершения транзакции все манипуляции с данными проводятся вне БД, а занесение реальных изменений в БД производится лишь после нормального завершения транзакции .

С точки зрения безопасности данных такой механизм отображения изменений в БД очень существенен . Если транзакция была прервана, то специальные встроенные средства СУБД осуществляют так называемый откат - возврат БД в состояние, предшествующее началу выполнения транзакции (на самом деле откат обычно заключается просто в невыполнении изменений, обусловленных ходом транзакции, в физической БД) . Если выполнение одной транзакции не нарушает целостности БД, то в результате одновременного выполнения нескольких транзакций целостность БД может быть нарушена . Чтобы избежать подобного рода ошибок, СУБД должна поддерживать механизмы, обеспечивающие захват транзакциями модифицируемых элементов данных до момента завершения модификации так называемые блокировки . При этом гарантируется, что никто не получит доступа к модифицируемому элементу данных, пока транзакция не освободит его . Применение механизма блокировок приводит к новым проблемам управления параллелизмом, в частности, к возникновению ситуаций клинча двух транзакций. Причем, если некоторая транзакция пытается блокировать объект, который уже блокирован другой транзакцией, то ей придется ждать, пока не будет снята блокировка объекта транзакцией, установившей эту блокировку . Иными словами, блокировку объекта может выполнять только одна транзакция .

             Восстановление данных

Как уже отмечалось, возникновение сбоев в аппаратном или программном обеспечении может вызвать необходимость восстановления и быстрого возвращения в состояние, по возможности близкое к тому, которое было перед возникновением сбоя ( ошибки) . К числу причин, вызывающих необходимость восстановления, зачастую относится и возникновение тупиковой ситуации .

Можно выделить три основных уровня восстановления .

1.    Оперативное восстановление, которое характеризуется возможностью восстановления на уровне отдельных транзакций при ненормальном окончании ситуации манипулирования данными (например, при ошибке в программе) .

2.    Промежуточное восстановление .Если возникают аномалии в работе системы (системно-программные ошибки, сбои программного обеспечения, не связанные с разрушением БД), то требуется восстановить состояние всех выполняемых на момент возникновения сбоя транзакций .


Информация о работе «Принципы защиты электронной информации»
Раздел: Информатика, программирование
Количество знаков с пробелами: 95856
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
45890
0
0

... правильно отделять частную информацию от сведений, составляющих государственные секреты, и не допустить конфликта с действующим уголовным правом. Специальные вопросы защиты коммерческой информации Коммерческая информация, циркулирующая в рыночно-конкурентной сфере деятельности, подразделяется на техническую, организационную, коммерческую, финансовую, рекламную, о спросе-предложении, ...

Скачать
73013
22
2

... radix-64. 2. 2. Система S/MIME. Система S/MIME (Secure/Multipurpose Internet Mail Extension – защищённые многоцелевые расширения электронной почты) является усовершенствованием с точки зрения защиты стандарта формата MIME электронной почты в Internet, базирующимся на использовании технологии RSA Data Security.Существуют основания полагать, что S/MIME станет стандартом коммерческого и ...

Скачать
61089
1
3

... питания, уничтожители бумажных документов Заключение Цель курсового исследования достигнута путём реализации поставленных задач. В результате проведённого исследования по теме "Методы защиты информации в телекоммуникационных сетях" можно сделать ряд выводов: Проблемы, связанные с повышением безопасности информационной сферы, являются сложными, многоплановыми и взаимосвязанными. Они ...

Скачать
78106
0
0

... гораздо больший процент от общей денежной массы, чем в России (доходящий до 40%). В чем же главные преимущества наличных расчетов, которые позволяют им благополучно сосуществовать со всеми новшествами электронных платежных систем и даже не сильно терять свои позиции? Это оперативность, большая надежность и, главное, анонимность. И тут возникает вполне естественный вопрос: “А нельзя ли соединить ...

0 комментариев


Наверх