1.3. Система теплорегуляции организма (физическая и химическая)
Терморегуляция – совокупность физиологических процессов, поддерживающих внутреннюю температуру тела на постоянном уровне.
Теплообразование зависит от интенсивности химических реакций обмена веществ, рост которого при охлаждении тела обеспечивается химической терморегуляцией. А физическая терморегуляция регулирует отдачу тепла организмом посредством физических процессов – теплопроводности, конвекции, излучения и испарения.
Химическая терморегуляция осуществляется изменением интенсивности окислительных процессов, вызванных микровибрацией мышц (колебаниями); а физическая – изменением температуры кожи, благодаря расширению (сужению) кожных сосудов, изменению интенсивности потоотделения и дыхания, являющихся реакцией на изменение температуры внешней среды, влажности воздуха и других факторов. Расширение сосудов кожи и увеличение количества притекающей крови ведет к усилению теплоотдачи, сужение их – к снижению ее.
Терморегуляция происходит рефлекторно благодаря раздражению температурных рецепторов кожи и слизистых оболочек, возникновению нервных импульсов, возбуждающих нервные центры.
ІІ. УРАВНЕНИЯ ТЕПЛОВОГО БАЛАНСА ОРГАНИЗМА С ОКРУЖАЮЩЕЙ СРЕДОЙ. ПРИБЛИЖЕННЫЕ ТЕПЛОВЫЕ РАСЧЕТЫ ОДЕЖДЫ
Основное назначение одежды – это защита организма человека от неблагоприятных воздействий внешней среды (ветер, туман, дождь и др.) и обеспечение теплового комфорта, который является условием нормальной жизнедеятельности человека. Необходимое условие сохранения длительного теплового комфорта – поддержание теплового баланса, который достигается путем терморегуляции организма и применения требуемой для данных условий одежды с искусственно регулируемым микроклиматом пододежного воздуха, характеризующегося температурой и влажностью. Основной же показатель теплового комфорта человека – это средневзвешенная температура поверхности тела (кожи), которая приблизительно одинакова для всех видов деятельности человека (≈330С – для кожи, покрытой одеждой). При этом учитывается, что пододежное пространство систематически вентилируется в связи с выделением кожи человека испарений влаги и углекислоты, которые должны удаляться.
Существуют аналитические методы теплового расчета одежды.
1) В процессе постоянного обмена веществ в организме человека в результате распада сложных химических соединений освобождается энергия. Она превращается в тепловую, электрическую и механическую энергии и обеспечивает протекание всех форм деятельности организма. Исходя из І и ІІ-го законов термодинамики энергетический баланс организма человека может быть описан уравнением:
M + J = Qрад. + Qконв. + Qисп. + Qдых. + Z, где
M – энергия, вырабатываемая в организме человека (теплопродукция), ккал/час;
Z – тепло, которое расходуется на механическую работу;
Qрад. – потери тепла радиацией (излучение), ккал/ч;
Qконв. – потеря тепла теплопроводностью и конвекцией;
Qисп. – потеря тепла испарением влаги с кожи и верхних дыхательных путей, ккал/ч;
Qдых. – потеря тепла на нагрев вдыхаемого воздуха, ккал/ч;
J – адсорбция тепла радиацией, ккал/ч.
Для расчета средневзвешенной температуры определяют общую поверхность тела, равную сумме поверхностей отдельных его частей методами антропометрии. Наиболее распространенных из них – линейный метод Дюбца: поверхность тела делится на отдельные части – голову, туловище, верхние и нижние конечности, а поверхности этих частей тела производятся по формулам (определяются), выведенным на основании антропометрических измерений человека.
Соотношение поверхности частей к общей поверхности тела:
голова – 7,36% бедро – 20,3%
туловище – 35,5% голень – 12,5%
плечо и предплечье – 13,4% стопа – 6,44%
кисть – 4,5%
Расчет средневзвешенной величины температуры поверхности тела человека осуществляется по следующей формуле:
n
tср.взв.к. = Σ • ti • Si/Sобщ. , где
i
ti – температура в иpмеряемой точке участка поверхности тела;
Si – площадь поверхности данного участка тела;
Sобщ. – общая площадь поверхности тела.
Для проектирования одежды важным является то, что человек может испытывать комфортные ощущение и при некотором нарушении теплового равновесия. Это результат существования "резерва" тепла организма человека, который используется им в случае охлаждения (1272 - 2448 ккал) и находится во внешних слоях тканей организма, на глубине 2-3 см от кожи. Величина его зависит от веса человека и температуры тела:
D = CP (0,7tТ + 0,3tК)
D – дефицит тепла в организме, ккал;
C – удельная теплоемкость тела человека, равная в среднем 0,83 ккал/кг • град;
P – вес тала человека, кг;
tт – температура тела в 0С;
tк – температура кожи в 0С.
Расчет радиационно-конвективных теплопотерь и требуемого теплового сопротивления одежды производится по методике ЦНИИШП с учетом величины энергозатрат человека (М), времени пребывания его в заданных метеорологических условиях (τ), температуры окружающей среды (tB), скорости ветра (vB) и воздухопроницаемости одежды.
1. Определяем энергию, затраченную человеком на механическую работу: Z = (M - Mосн.) • 10% / 100%;
2. Qисп.=[(M+D/t)-Z] • 20/100% • [(H+D/t) • (M-Mосн.)•10% / 100%] • 20/100%
3. Qисп. = (M+D/t) - Z - Qисп. - Qдых. = Q72М +0,028Мосн. + 0,8D/t - Qдых.
Зная величину радиационно-конвективных теплопотерь, можно определить плотность теплового потока с поверхности тела человека:
q = Qрад-конв. / Sобщ.
Общая площадь тела человека находится как зависимость площади поверхности тела человека от его роста и веса.
Суммарное тепловое сопротивление одежды определяется по формуле:
Rсум. = tср.взв.к - tB / q
При этом ввиду того, что тепловое сопротивление одежды падает при повышении скорости ветра, необходимо установить поправку на ветер к Rсум. с учетом воздухопроницаемости материалов одежды.
2) Метод Г.Кондратьева. За критерий комфорта принята средняя температура кожи также.
Учитывая І-ый закон термодинамики, т.е. закон термодинамики – Закон сохранения энергии, тепловой баланс тела человека выражается уравнением: M = Q + Q׀ + L + E + A, где
М – теплопродукция, ккал/ч;
Q – теплоотдача через кожу, покрытую одеждой;
Q׀ – теплоотдача через кожу, не покрытую одеждой;
Е – теплоотдача через дыхательные пути;
L – потеря тепла на механическую работу;
А – накопление энергии в виде теплоты в организме (внутри).
Величины Q׀ и А незначительны, поэтому в приближенном расчете исключаются: M = Q + L + E
Величины L и Е составляют некоторые доли от М: L = хМ, Е = уМ, где х,у – правильные дроби, показывающее тепло, теряемое в результате внешней механической работы (х) и при дыхании (у).
Таким образом, получаем полное количество тепла, которое проходит сквозь одежду, т.е.
Q = М (1 - х - у)
Полагая, что х≈0,20, у≈0,24 при длительной работе, получим Q=0,56М или Q=qS, где
q – удельный тепловой поток, тепловая нагрузка одежды;
S – поверхность кожи человека, м2;
Для наглядности сравним данную тепловую нагрузку одежды (q) с тепловой нагрузкой, соответствующей нормальному тепловому состоянию организма (q0), когда температура воздуха, стен, потолка равна 210С, скорость воздуха 0,1 м/сек, относительная влажность воздуха 40-60%, физические усилия отсутствуют, средняя температура кожи под одеждой t1=330С, тепловое сопротивление воздуха RПо=0,14, т.е. коэффициент теплоотдачи α0=7,15 ккал/м2 • ч • град.
N = q/q0 = Q/Q0 – показатель тепловой нагрузки выражает, во сколько раз теплопотери кожи под одеждой при данных условиях работы организма больше теплопотери при нормальном состоянии.
Аналогично, I - R/R0 – показатель теплоизоляционной способности данной одежды выражает теплозащитную способность этой одежды по сравнению с той одеждой, в которую одет человек при нормальном тепловом состоянии. Чем больше І, тем теплее одежда. R0 – тепловое сопротивление нормализованной одежды = 0,17 ÷ 0,18 м2 • ч • град/ккал.
Таким образом, величина М определяется видом деятельности человека, а N = M (1 - x - y)/Q0 , а при (1 - x - y)≈0,56
N ≈0,78M/100
Q0 = 72ккал/ч
Для определенной обстановки работы известны tB – температура внешней среды и α – коэффициент теплоотдачи α от поверхности одежды в окружающую среду. Следовательно, из уравнения находим І, а требуемое тепловое сопротивление одежды по формуле R=0,175 • I.
Проведенный тепловой расчет одежды относится только к установившемуся тепловому режиму организма и стационарным внешним условиям, он исключает период адаптации и относится только к длительной работе, а не к кратким усилиям (длительность исчисляется минутами).
Л И Т Е Р А Т У Р А
1. Р.Г.Рахимов, И.А.Дмитричева. "Гигиена одежды. Лабораторно-практические работы. Методические указания". Киев, 1980.
2. П.А.Колесников. "Теплозащитные свойства одежды". Издательство "Легкая индустрия". Москва, 1965.
... белый цвет. Различная окраска этих частей мозга объясняется тем, что тела нервных клеток имеют серый цвет, а отростки - белый. Кора головного мозга - это высший отдел нервной системы. Все процессы жизнедеятельности организма подчинены влиянию коры головного мозга. Мозговой ствол отходит от основания головного мозга книзу на соединение со спинным мозгом. Мозговой ствол - небольшое образование ...
... йода . Тканевые депо обладают мощными резервами макроэлементов, тогда как тканевые резервы микроэлементов незначительны. Этим объясняются низкие адаптационные возможности организма к дефициту микроэлементов в пище . По степени значимости для организма человека макро- и микроэлементы делят на следующие группы: жизненно важные (эссенциальные) элементы – это все макроэлементы (H, O, N, C, Ca, Cl, ...
... является технология кулинарной обработки. Провитамины являются предварительной стадией синтеза витаминов. В организме человека провитамины превращаются в биологически актуальную форму. Витамины регулируют жизнедеятельность организма и выполняют защитную функцию. Они лишены какой-либо питательной ценности, однако без них невозможен обмен веществ. Кроме того, они повышают работоспособность и тонус, ...
... множество делений, наиболее радиочувствительны. Изменения на клеточном уровне, гибель клеток приводят к таким нарушениям в тканях, в функциях отдельных органов и в межорганных взаимосвязанных процессах организма, которые вызывают различные последствия для организма или гибель организма. Взаимодействие радиации с живым веществом происходит по физическим законам: возбуждаются и ионизируются атомы и ...
0 комментариев