Министерство Науки и Высшего образования

Республики Казахстан

Республиканское государственное казенное предприятие

Восточно-Казахстанский государственный университет

Кафедра прикладной механики

Реферат на тему:

«Электронные ключи»

Выполнил:

студент группы 4Ж

Антонов А.И.

Усть-Каменогорск

1999 г.


Оглавление.

1. КЛЮЧЕВОЙ РЕЖИМ РАБОТЫ ЭЛЕКТРОННОЙ ЛАМПЫ

2. СТАТИЧЕСКИЕ РЕЖИМЫ РАБОТЫ ТРАНЗИСТОРНОГО КЛЮЧА

3. ВКЛЮЧЕНИЕ ТРАНЗИСТОРНОГО КЛЮЧА

4. ВЫКЛЮЧЕНИЕ ТРАНЗИСТОРНОГО КЛЮЧА

5. Список литературы

ЭЛЕКТРОННЫЕ КЛЮЧИ


При работе в импульсных схемах электронные приборы (лампы, транзисторы, тиристоры и др ) имеют два рабочих состояния. В одном из них электронный прибор закрыт, ток через него практически не проходит и его внутреннее со­противление Ri велико; в другом состоянии прибор открыт, ток в выходной цепи имеет заданное значение, а внутреннее сопротивление мало. Переход из одного состояния в другое сопровождается переходным процессом, время которого определяет длительность фронта и среза импульса. Такой режим работы электронного прибора называется ключевым.

1. КЛЮЧЕВОЙ РЕЖИМ РАБОТЫ ЭЛЕКТРОННОЙ ЛАМПЫ

Когда коммутируемая импульсная мощность не превышает де­сятков ватт, в качестве ключевых элементов используются тран­зисторы.

В мощных генераторах импульсов применяют специальные импульсные модуляторные лампы. Двум рабочим состояниям

Электронные ключи

Электронные ключи


Рис. 7.1. Анодно-сеточная и сечочная характеристики лам­пы.


Рис. 7.2. Схема ключа на электронной лампе.


электронной лампы соответствуют определенные положения ра­бочей точки на анодно-сеточной характеристике (рис. 7.1). Лампа закрыта (режим отсечки), когда напряжение на сетке uсет мень­ше порогового Uпор и рабочая точка (точка А) находится на го­ризонтальном участке характеристики. Анодный и сеточный токи лампы при этом практически равны нулю. Когда uсет > Uпор, лампа открыта. В анодной цепи протекает ток Ia, а если при этом напряжение на сетке положительное, то имеет место сеточный ток Iсет (точка В). Участок характеристики между этими двумя точками нельзя аппроксимировать отрезком прямой линии.

Таким образом, электронная лампа в ключевом режиме ведет себя как существенно нелинейный элемент. Естественно, что при анализе импульсных схем необходимо учитывать эту нелиней­ность.


Чтобы, с одной стороны, учесть нелинейность электронных приборов, а с другой — не усложнять расчет, используют ис­кусственный прием расчета импульсных схем. Сущность его со­стоит в том, что рассматривают процессы в схеме для двух состоя­ний электронного прибора: открытого и закрытого, который пред­ставляется соответствующими эквивалентными параметрами. Вид анодно-сеточной характеристики электронной лампы (ее нелинейность) не имеет существенного значения, поскольку за­кон изменения напряжения или тока при формировании фронта и среза импульса не является главным. Определяющей является длительность переходного процесса, которая должна быть минимальной.

В режиме отсечки участки схемы, к которым подключены сет­ка и анод лампы (рис. 7.2), представляются разомкнутыми. В отк­рытом состоянии анодная цепь заменяется эквивалентным резис­тором, сеточная цепь также представляется эквивалент­ным резистором.

Длительность перехода лампы из открытого состояния в за­крытое и обратного перехода определяется временем изменения напряжения на электродах, которое в основном зависит от пос­тоянной времени цепей перезарядки межэлектродных емкостей. Инерционность электронного потока лампы при анализе переходного процесса обычно не учитывают, так как время пролета электронами между электродного простран­ства составляет доли наносекунды. Поскольку длительность фронта и среза импульсов, генерируемых схемами с модулятор­ными лампами, гораздо больше этого времени, такое допущение правомерно.

2. СТАТИЧЕСКИЕ РЕЖИМЫ РАБОТЫ ТРАНЗИСТОРНОГО КЛЮЧА

Рис. 7.3. Схема транзисторного ключа с общим эмиттером

Электронные ключи

В силу ряда неоспоримых преимуществ (отсутствие накала, ма­лые габариты, малая потребляемая мощность, высокая надеж­ность) транзисторы полностью заменили электронные лампы в ма­ломощных импульсных схемах. Более того, использование тран­зисторов позволило создать такие схемы, реализация которых с помощью ламп принципиально невозможна. В импульсных схемах используются германиевые и кремниевые, биполярные и полевые транзисторы. В дальнейшем будем рассматривать схемы на кремниевых транзисторах n-p-n-типа, поскольку они наиболее широко применяются.

В большинстве случаев используют транзисторный ключ с общим эмиттером (ОЭ), в котором нагрузочный резистор включен в коллекторную цепь (рис. 7.3). (Если в схеме используется

не п-р-п-, а p-n-p-транзистор, то на коллектор подается отрица­тельное напряжение.) Напряжения и токи, соответствующие за­крытому и открытому состояниям транзистора, могут быть опре­делены с помощью входных и вы­ходных статических характеристик транзистора, включенного по схе­ме ОЭ (рис. 7.4).

Режим отсечки. Закрытому состоянию транзистора соответ­ствует режим отсечки, при кото­ром на коллекторном и эмиттер-ном переходах действуют обратные напряжения. Через переходы проходят токи, обусловленные процессами тепловой генерации носителей заряда в объеме по­лупроводника. При включении

транзистора по схеме ОЭ в режиме отсечки в коллекторной цепи протекает ток, близкий обратному току коллекторного перехода. Этот ток закрытого кремниевого транзистора ничтожно мал (менее 1 нА), поэтому его обычно в расчетах не учитывают и


Электронные ключи uкэ в)

Электронные ключи

uбэ

 а)



Рис. 7.4. Входная (а) и выходная (в) характеристики транзисторного ключа ОЭ

входное и выходное сопротивления закрытого кремниевого транзистора, определяемые сопротивлениями обратносмещенных коллекторного и эмиттерного переходов, при расчетах прини­мают бесконечно большими.

Ток коллекторного перехода закрытого германиевого тран­зистора на несколько порядков больше, чем ток кремниевого. Поэтому при анализе импульсных схем с германиевыми транзис­торами его учитывают и транзистор в режиме отсечки представ­ляют источником тока, действующим в цепи коллектор — база.

Прямые ветви входных статических характеристик в первом приближении представляются экспоненциальной зависимостью тока базы от напряжения база — эмиттер. Следовательно, сколь угодно малое увеличение напряжения uбэ приводит к рос­ту Iб. Однако ток базы становится заметным лишь при опреде­ленном значении и uбэ = Uотп. Поэтому при расчетах импульсных схем удобно пользоваться напряжением отпирания (открывания) Uотп.

Режиму отсечки соответствует точка А на статических ха­рактеристиках транзистора.

Режим насыщения. Транзистор открывается, когда на вход подается положительное напряжение, и при условии uбэ > Uотп. коллекторный и базовый токи увеличиваются. По мере на­растания тока базы растет коллекторный ток и уменьшается кол­лекторное напряжение uкэ за счет падения напряжения на ре­зисторе а также уменьшается обратное напряжение, приложенное к коллекторному переходу.

Пока при увеличении тока на коллекторном переходе имеется обратное напряже­ние, транзистор находится в активном режиме и имеет место сле­дующее соотношение между токами:

Электронные ключи

При некотором значении базового тока напряжение на кол­лекторном переходе становится равным нулю и дальнейшее увеличение тока Iб, а следовательно, и тока Iк приводит к появ­лению прямого напряжения на коллекторном переходе, т. е. потенциал базы относительно коллектора становится положи­тельным. В прямом направлении оказывает­ся включенным не только эмиттерный, но и коллекторный пере­ход. Это приводит к тому, что не все носители, инжектированные эмиттером и дошедшие до коллекторного перехода, перехваты­ваются им. Навстречу потоку неосновных носителей, идущих из базы в коллектор, движется поток таких же носителей из коллек­тора в базу, и суммарный их ток определяется разностью этих потоков. В результате коллекторный ток при дальнейшем уве­личении тока базы перестает расти. Транзистор переходит в режим насыщения, который характеризуется постоянством тока коллектора В связи с тем что в режиме насыщения кол­лекторный переход не осуществляет полной экстракции носите­лей из базы, там происходит их накопление и интенсивная ре­комбинация и пропорциональная зависимость между токами Iб и Iк не выполняется.

Напряжения на коллекторе и базе насыщен­ного транзистора остаются практически постоянными.

Токи, протекающие во внешней цепи транзистора в насыще­нии, определяются следующими соотношениями:

Электронные ключи

где UБ+, UП - напряжения источников питания базы и коллек­тора.

Как видно, токи транзисторного ключа в режиме насыщения определяются внешними параметрами схемы и практически не зависят от характеристик-транзистора. Режиму насыщения соот­ветствует точка В на статических характеристиках.

Режим насыщения кремниевого транзистора определяется условием uкб = -Uотп При заданных коллекторном и базовом токах удобным для расчетов является критерий насыщен­ного состояния по току. Его можно установить, рассуждая так. Пропорциональная зависимость между токами Iб и Iк , справедливая для активного режима, сохраняется вплоть до отпирания коллекторного перехода. Следовательно, на границе активного режима и режима насыщения также имеет место соотношение Электронные ключи где Iб гр - базо­вый ток, при котором транзистор входит в режим насыщения. Как было отмечено, дальнейшее увеличение базового тока не приводит к росту коллекторного тока. Таким образом, критерий насыщенного состояния транзистора можно записать в виде

Электронные ключи (7.1)

Если в соотношение (7.1) подставить выражения для токов получим:

Электронные ключи

В реальных условиях работы транзисторного ключа напря­жения источников питания могут изменяться, имеет место также разброс сопротивлений резисторов и коэффициента передачи тока h21э. Это может привести к невыполнению неравенства (7.1), выходу транзистора из режима насыщения и соответственно к изменению коллекторного тока и выходного напряжения. Для обеспечения устойчивого режима работы транзисторного ключа параметры его рассчитывают таким образом, чтобы неравенство (7.1) выполнялось при изменениях в некоторых пределах вхо­дящих в него величин.

Помехоустойчивость транзисторного ключа тем больше, чем выше коэффициент насыщения:

Электронные ключи

Хотя для повышения помехоустойчивости желательно увеличивать коэффициент насыщения, однако сле­дует помнить, что при этом растет время переключения транзис­торного ключа.


Информация о работе «Электронные ключи»
Раздел: Информатика, программирование
Количество знаков с пробелами: 18089
Количество таблиц: 5
Количество изображений: 2

Похожие работы

Скачать
5484
0
3

... переходов и действиями скопления и рассасывания неосновных носителей заряда в базе. Для повышения быстродействия и входного сопротивления используют ключи на полевых транзисторах. 2. Схемы электронных ключей на полевых транзисторах   Транзисторный ключ является основным элементом устройств цифровой электроники. Основные особенности транзисторного ключа является обязательным условием понимания ...

Скачать
143686
5
84

... , Тайваня, США. Телефон-трубка собрана на семи транзисторах. Питание схемы снимается с диодного моста VD4 — VD7 через герконовый (или другого типа) переключатель SA1. На транзисторах VT1, VT2, VT3 собраны дифференциальная схема и электронный ключ для набора номера. Питание разговорной части схемы снимается с делителя R5, R8 и зависит от номинала резистора R8, (150 — 200 Ом). На транзисторе VT4 ...

Скачать
31950
5
5

... цифровой подписи в системе «ДЕЛО» предусмотрена специальная опция «ЭЦП и шифрование». Опция позволяет подписывать цифровым способом документы, хранящиеся и обрабатываемые в системе автоматизации делопроизводства и электронного документооборота «ДЕЛО». При необходимости, документ может быть подписан несколькими сотрудниками, что очень удобно для автоматизации процедур согласования, визирования и ...

Скачать
36195
4
29

... точности S должен решаться с учетом реализуемого шага и закона перестройки.   5. Влияние неидеальности электронных ключей на свойства базисных структур   При построении ЦУП в качестве коммутаторов чаще всего используются МДП ключи (рис. 19, 20). Рис. 19. Принципиальная (а) и эквивалентная (б) схемы i-й ветви ЦУП Рис. 20. Принципиальная (а) и эквивалентная (б) схемы i-й ветви ЦУП ...

0 комментариев


Наверх