4.2 ПОСТРОЕНИЕ РАЗВЕРНУТОЙ ИНДИКАТОРНОЙ ДИАГРАММЫ.
Отрезок ОО1 составит : ОО1= Rl/2 = 0,25*3,75/2 = 0,47 (см). Отрезок АС :
АС = mj w2 R(1+l) = 0,5 Рz = 0,5*6,524 = 3,262 (МПа) ; Рх = 3,262/0,05 = 65,24 мм.
Отсюда можно выразить массу движущихся частей :
Рассчитаем отрезки BD и EF :
BD = - mj w2 R(1-l) = - 0,000218*319451*0,0375*(1-0,25) = -1,959 (МПа) .
EF = -3 mj w2 Rl = -3*0,000218*319451*0,0375*0,25 = -1,959 (МПа ). Þ BD= EF
Рис.4 Развернутая индикаторная диаграмма карбюраторного двигателя.
Силы инерции рассчитаем по формуле : Рj = - mj w2 R(cosa + lcos2a)
ТАБЛИЦА 7. Силы инерции .
a | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 |
Рj | -3,25 | -2.58 | -0,98 | 0,65 | 1,625 | 1,927 | 1,95 | 1,927 | 1,625 | 0,65 | -0,98 | -2,58 |
a | 360 | 390 | 420 | 450 | 480 | 510 | 540 | 570 | 600 | 630 | 660 | 690 |
Pj | -3,25 | -2,58 | -0,98 | 0,65 | 1,625 | 1,927 | 1,95 | 1,927 | 1,625 | 0,65 | -0,98 | -2,58 |
Расчет радиальной , нормальной и тангенциальной сил для одного цилиндра :
Определение движущей силы , где Р0 = 0,1 МПа , Рдв = Рr +Pj - P0 , где Рr - сила давления газов на поршень , определяется по индикаторной диаграмме теплового расчета . Все значения движущей силы в зависимости от угла поворота приведены в таблице 8. Зная движущую силу определим радиальную , нормальную и тангенциальную силы :
N= Рдв*tgb ; Z = Рдв * cos(a+b)/cosb ; T = Рдв * sin(a+b)/cosb
ТАБЛИЦА 8. Составляющие силы .
По результатам расчетов построим графики радиальной N (рис.5) , нормальной (рис.6) , и тангенциальной (рис.7) сил в зависимости от угла поворота кривошипа .
Рис.5 График радиальной силы N в зависимости от угла поворота кривошипа .
Рис 6. График зависимости нормальной силы от угла поворота кривошипа.
Рис.7. График тангенциальной силы в зависимости от угла поворота кривошипа
4.4 ОПРЕДЕЛЕНИЕ СУММАРНЫХ НАБЕГАЮЩИХ ТАНГЕНЦИАЛЬНЫХ СИЛ И СУММАРНОГО НАБЕГАЮЩЕГО КРУТЯЩЕГО МОМЕНТА .
Алгебраическая сумма касательных сил , передаваемых от всех предыдущих по расположению цилиндров , начиная со стороны , противоположной фланцу отбора мощности , называется набегающей касательной силой на этой шейке . В таблице 10 собраны тангенциальные силы для каждого цилиндра в соответствии с работой двигателя и определена суммарная набегающая тангенциальная сила на каждом последующем цилиндре .
Суммарный набегающий крутящий момент будет : å Мкр = å (å Тi) Fп R , где Fп - площадь поршня : Fп = 0,005 м2 , ; R= 0,0375 м . - радиус кривошипа . Порядок работы поршней в шести цилиндровом рядном двигателе : 1-4-2-6-3-5 .
Формула перевода крутящего момента : Мкр =98100* Fп R
Рис. 8. График среднего крутящего момента в зависимости от угла поворота кривошипа.
Определим средний крутящий момент : Мкр.ср = ( Мmax + Mmin)/2
Мкр.ср = (609,94+162,2)/2 = 386 н× м .
5. ВЫВОДЫ.
В результате проделанной работы были рассчитаны индикаторные параметры рабочего цикла двигателя , по результатам расчетов была построена индикаторная диаграмма тепловых характеристик.
Расчеты динамических показателей дали размеры поршня , в частности его диаметр и ход , радиус кривошипа , были построены графики составляющих сил , а также график суммарных набегающих тангенциальных сил и суммарных набегающих крутящих моментов.
Шестицилиндровые рядные двигатели полностью сбалансированы и не требуют дополнительных мер балансировки .
6. СПИСОК ЛИТЕРАТУРЫ.
1. КОЛЧИН А. И. ДЕМИДОВ В. П. РАСЧЕТ АВТОМОБИЛЬНЫХ И ТРАКТОРНЫХ ДВИГАТЕЛЕЙ. М.: Высшая школа, 1980г.;
2. АРХАНГЕЛЬСКИЙ В. М. и другие. АВТОМОБИЛЬНЫЕ ДВИГАТЕЛИ. М.: Машиностроение, 1967г.;
3. ИЗОТОВ А. Д. Лекции по дисциплине: «Рабочие процессы и экологическая безопасность автомобильных двигателей» . Заполярный, 1997г..
... двигателей внутреннего сгорания , разработка опытных конструкций и повышение мощностных и экономических показателей стали возможны в значительной мере благодаря исследованиям и разработке теории рабочих процессов в двигателях внутреннего сгорания . Выполнение задач по производству и эксплуатации транспортных двигателей требует от специалистов глубоких знаний рабочего процесса двигателей , знания ...
... говоря уже о топливных газах нефтеперерабатывающих заводов. В 2008 г. создано государственное предприятие «Московская служба технического контроля на транспорте», которое занимается проблемами снижения вредного воздействия автотранспорта на окружающую среду. Предприятие занимается созданием системы технического контроля качества реализуемых моторных топлив, масел и присадок к ним, а также научно- ...
... , для снижения экологической нагрузки на окружающую среду от автотранспорта очень важно поддержание в течение всего срока службы экологических параметров, заложенных заводом-изготовителем. 2. Основные направления повышения экологической безопасности автомобилей. Транспорт - важное условие функционирования общественного производства и жизни людей. Пассажиропотоки в городах растут быстрее, ...
... -3%. За итогом сводной сметы учтены возвратные суммы в размере 15%от главы«Временные здания и сооружения». Глава 13. Охрана труда Техника безопасности при строительстве автомобильной дороги Техника безопасности - система организационных мероприятии и технических средств, предотвращающих или уменьшающих воздействие на работающих опасных производственных факторов. Требования к видимости ...
0 комментариев