4.   Расчет энергопотребителя.

1)   На отопление.

Рассчитаем поток теплоты, необходимый на отопление:

Фот = gот* Vн (tв – tн)а

где gот – удельная относительная характеристика здания, Вт/(м³*С)

gот = 0,43 Вт/(м³*С) для склада

Vн - объем помещения по наружному обмеру, м³

tв – внутренняя температура, С, tв = +14С

tн - наружная температура зимой, tн = -18 С

а – коэффициент запаса а = 1,1

Фот = 0,43*1080(14-(-18))*1,1 = 17,1 кВт

Выбираем для отопления два тепловентилятора марки ТВ – 36, рабочая мощность 8,8 кВт, потребляемая 9,7 кВт.

2. На освещение.

Для освещения будем использовать лампы накаливания мощностью 200 Вт. Они будут размещены через каждые три метра в длину, и 2,5 м в ширину в три ряда. Для освещения используется 21 лампа. Потребляемая мощность

Nоб = n*Nл = 0,2*21 = 4,2

Для энергообеспечения склада нам необходима мощность

N потр = Nот+Nосв

N потр = 17,1 +4,2 = 21,3 кВт = 21300 Вт

5.   Расчет ветроэнергетической установки.

Рассчитаем мощность ВЭУ необходимую для обеспечения энергоснабжения склада.

Она определяется по формуле:

N вет = Nпотр/ηмех*ξ

где ηмех – КПД механической передачи

η = 0,89 для редуктора с зубчатой передачей

ξ – коэффициент использования ветрового потока. Для ветроагрегатов карусельного типа ξ = 0,1…0,13 принимаем ξ = 0,14

N веет = 21300/0,89*0,14 = 170947 Вт

Так как при такой мощности ВЭУ она будет иметь очень большие размеры, что нецелесообразно, то мы установим 8 ВЭУ меньшего размера, тогда мощность одной ВЭУ

N веет = 170947/8 = 21368 Вт

Исходя из значения найденной нами мощности ВЭУ, определим площадь воздействия ветрового потока, по формуле:

F = 2N/ρΰ³

где ρ – плотность воздушного потока г/м3 по справочнику принимаем ρ = 1,193 кг/м³

ΰ – скорость ветра, принимаем ΰ = 9 м/с

F=2*21368/1,1193*9³ = 49,1 м²

Наиболее лучшей является отношение

a/b = ¾

a = 6м b = 8,2 м

F = a*b = 6*8,2 = 49,2 м²

Мы устанавливаем для энергоснабжения склада 8 установок карусельного типа N = 213000Вт и площадью лопасти 49,2 м³

6.   Правила эксплуатации ВЭУ.

ВЭУ должны устанавливаться на открытой местности, на специально отведенных для них площадках. Они должны постоянно находиться под присмотром специалиста, который хорошо ознакомлен с их устройством и принципом работы. Так как у нас ВЭУ с вертикальным валом, вследствие этого редактор и генератор расположены на земле и это в значительной мере облегчает техническое обслуживание ВЭУ.

Техническое обслуживание ВЭУ проводят 1-2 раза в месяц, специалист.

Техническое обслуживание включает:

1. Внешний осмотр ВЭУ

а) Осмотр лопастей и вала

б) осмотр крепления и растяжек и осмотр подшипников

2. Проверка уровня масла в редукторе

3. Проверка напряжения на зажимах генератора

7.   Оценка экономической эффективности ВЭУ

При установке ВЭУ мы избавляемся от затрат на топливо.

Годовая экономия рассчитывается по формуле:

Эсу = ЗтВ-Ен*К+Ен*Кдоб*В+Вдл*Зэл

Зт – стоимость условного топлива

Зт = 2300 руб/Тут

В – годовая экономия условного топлива в кг/ч рублях

Вч = 3,6 Ф/(g* ηка)

Вч = 3,6*17100/29300*0,8=2,6 кг

Годовой расход топлива В = Вч*24*n

n – количество отопительных дней

В = 2,6*24*169 = 10345,6 кг/год +10,5 т/год

К- капитальные затраты на изготовление установки.

Себестоимость одной установки 1000 руб. Установок 8 шт., к = 8*10000 = 80000 руб.

Ен – нормативный коэффициент Ен=0,15

Кдоб – удельные налогообложения в прирост добычи топлива К доб = 104 руб/т

Вэл – годовая экономия электричества

В час = 4,2 кВт/ч

Вгод = Вчас*ng* nч

ng – количество дней в году ng = 365 дней

nч – количество часов потребления энергии в сутки nч = 10 часов

В год = 365*4,2*10 = 15330 Вт

Зэл – стоимость электроэнергии Зэл = 0,4 руб.

Эсу = 10,5*2300-0,15*80000+0,15*104*10,5+15330*0,4 = 18445,8 руб.

Срок окупаемости установки

τсу = К/Эсу

τсу = 80000/18445,8 = 4,34 год

Срок окупаемости ВЭУ 4,34 года. Т.к.  срок окупаемости установки меньше 10 лет, то ВЭУ эффективно.

Подпись: Схема энергообеспечения склада
1 – помещение склада; 2 – теплоизоляция; 3 – чердачное перекрытие; 4 – воздуховод;
5 – жалюзи; 6 – вентилятор; 7 – калорифер; 8 – лампа; 9 – ветровой барабан; 10 – вал;
11 – подшипник; 12 – редуктор; 13 – генератор.



Описание к схеме.

Имеется здание материального склада 1, утеплено теплоизоляционным материалом 2 в качестве которого служит слой пенополиуритана толщиной 10 мм. По всей длине здания проходит воздуховод 4, в который нагнетается теплый воздух, при помощи вентилятора 6. Воздух поступает в калорифер 7, нагревается, поступает в воздуховод и распространяется по всему зданию. В складе имеются для освещения 21 лампа накаливания. Энергообеспечение склада осуществляется при помощи 8-ми ветроэнергетических установок. ВЭУ состоит из ветрового барабана 9, который размещается на валу 10, вал передает крутящий момент на редуктор 12, редуктор увеличивает частоту вращения и передает крутящий момент на вал генератора 13. Генератор начинает вырабатывать электрическую энергию, которая идет на отопление

и освещение склада.

 

Литература

1.   Ветроэнергия в сельском хозяйстве. М.: ГосНИИТИ 1960 г.

2.   Возобновляемые источники энергии на службе человека. Журнал «Человек и природа» - №5, 1986 г.

3.   Б.М.Берновский Возобновляемые источники энергии на службе человека. М.: Наука 1987 г.

4.   Стефанова В.Э. Возобновляемые источники энергии на сельскохозяйственных предприятиях. М,:»Агропромиздат», 1989 г.

5.   Оборудование для использования нетрадиционных источников энергии «АгроНИИТЭИИТО» М.: 1996 г.

6.   Разработка и внедрение оборудования для использования возобновляемых источников энергии.

7.   Рекомендации по применению ветроэнергетических установок в сельском хозяйстве. М.: Колос, 1972 г.

8.   Романенко Н.Н. Основы ветроэнергетических расчетов и ветроиспользования


Информация о работе «Энергосбережение материального склада при помощи ветроэнергетической установки с вертикальным валом»
Раздел: Разное
Количество знаков с пробелами: 17329
Количество таблиц: 11
Количество изображений: 10

Похожие работы

Скачать
109448
20
7

... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...

0 комментариев


Наверх