4. Современные представления о механизмах возникновения новых генов
В Интернете была обнаружена полная версия весьма свежего обзора (2003 г.; "Nature Review Genetics"), о котором мы уже упоминали40. Он написан группой из трех авторов из двух университетов США и примкнувшим к ним исследователем из АН Китая. Все, включая последнего, — из научных подразделений, изучающих вопросы генетики и/или эволюции (в том числе на молекулярном уровне).
В Сети имеются и еще два обзора по эволюции генов тех же основных авторов из США — более ранний 2002 г.44 и вновь 2003 г.45 (журнал "Genetica", Нидерланды).
Названия указанных работ следующие:"Происхождение новых генов: взгляд на старые и новые представления" ("The origin of new genes: glimpses from young and old") 40, "Распространение в геноме кодирующих участков путем приобретения новых генов" ("Expansion of genome coding regions by acquisition of new genes")44 и "Происхождение новых генов: экспериментальные и расчетные свидетельства" ("Origin of new genes: evidence from experimental and computational analyses")45.
Эти обзоры произвели весьма солидное и благоприятное впечатление. Множество проанализированных источников — свежие (целый ряд — 2002–2003 гг.). Можно надеяться, что все "разложено по полочкам". Похоже, что механизмы образования новых генов разобраны тщательно и, на настоящий момент, полно (вряд ли с 2003 г. что-нибудь существенно изменилось). Все они, конечно, рассматриваются в эволюционном аспекте.
Что понимается в указанных обзорах под "новыми генами" и насколько они отличаются от "старых", мы исследовать не будем — необходимо проанализировать массу конкретных оригинальных статей, которые послужили материалом для обзоров. Хотя даже на поверхностный взгляд по опубликованным в тех обзорах таблицам и видно, что подавляющее большинство упомянутых "новых генов" и "новых белков" являются изоформами (модификациями) "старых" генов и соответствующих им белков, все-таки поверим авторам. Раз они их называют "новыми", пусть таковыми и будут.
Ваш покорный слуга наметил в перспективе рассмотреть данный вопрос в другом обзоре.
Рассмотрим, если Господу угодно будет.
Итак, каковы же известные на современном этапе механизмы образования "новых" генов?
Таких механизмов оказалось семь, однако шесть из них связаны с изменениями и/или умножениями кодирующей информации уже существовавших, "старых" генов. Кратко перечислим их, хотя и будут, конечно, некоторые специальные термины. Отметим, что для каждого механизма в обзоре представлены примеры экспериментальных подтверждений, причем многие — даже для высших эукариот (многоклеточных организмов).
1) Перетасовка экзонов (Exon shuffling). Надо сказать, что гены эукариот состоят из кодирующих (экзоны) и некодирующих (интроны) участков. Последние вырезаются при сплайсинге (конечный этап созревания РНК после считывания с матрицы ДНК). При перетасовке экзонов происходит как бы изменение расположения частей гена по отношению друг к другу и, соответственно, ген может функционировать по-другому. Правда, нередко не совсем по-другому: иной раз получаются мозаичные белки, где разные их части просто перетасованы. Как видим, здесь, вероятно, не появляется ни качественно новых генов, ни качественно новых белков. Этому механизму отводится главная роль [40, 44, 45].
2. Удвоение гена (Gene duplication). Отмечается, что дуплицированный ген может приобретать новые функции, в то время как его исходная копия продолжает выполнять исходные. От себя отметим: наверное, известная амплификация (умножение копий гена, например, резистентности к неблагоприятному фактору) является частным случаем этой дупликации. Снова можно сказать, что идет какое-то изменение или умножение уже имеющегося гена, а не образование совершенно нового.
3. Ретропозиция (Retroposition) или, как указывается, включение дуплицированного гена в новую позицию в геноме путем обратной транскрипции. Здесь нам надо уяснить только, что снова происходит считывание уже имевшейся генной информации с новым типом включения ее в геном.
4. Образование генной вставки путем включения мобильного элемента или транспозона (Mobile element; transposone). Мы уже говорили, что мобильные элементы являются фрагментами ДНК из нескольких генов или некодирующих последовательностей. Они как бы "гуляют" вдоль ДНК или между клетками разных бактерий, встраивая свои мобильные гены на новые места, где те способны работать по-другому. Но это "по-другому" снова не значит, что приобретается абсолютно новая генная информация, возникшая из негенной.
5. Горизонтальный транспорт генов (Lateral gene transfer) — передача генной информации от клетки к клетке. Процесс продемонстрирован для микроорганизмов и растений. В обзоре [40] предполагается, что он может быть важен и для эволюции высших организмов. Понятно, что при передаче генов новые не появляются.
6. Слияние/расщепление генов (Gene fusion/fission). Два смежных гена могут сливаться в единый при транскрипции, через делецию или мутацию трансляционного стоп-кодона, и использовать сигнал терминации транскрипции в расположенном далее гене. Наоборот, единый ген может разделяться на два отдельных гена, хотя механизм этого не ясен. Идентифицирован ряд случаев генного слияния у прокариот; имеются данные и для высших эукариот, в том числе для генов человека.
Здесь мы как будто встречаем формирование новых генов, но вновь ясно, что никакая информация не появляется "из ничего". Происходит считывание в виде единого гена информации сразу с двух генов ("слияние") или в виде нескольких генов с разных частей одного гена ("расщепление"). И тут гены возникают из других кодирующих участков.
Наконец, особо интересующий нас 7-й механизм: возникновение генов de novo, т.е. заново, из ранее некодирующих последовательностей. О нем упомянуто только в одном обзоре из трех названных выше [40], причем в самом конце перечисления. Этому механизму уделены три строчки и сказано, что появление гена de novo явление крайне редкое, что для целого гена оно встречается еще реже и более характерно для частей гена. Правда, далее в обзоре [40] возникновение генов de novo все же немного обсуждается и приведены несколько примеров: один ген дрозофилы (Sdic)46,47 и ген, кодирующий антифризный белок у антарктических полярных рыб48–51. Упоминается также, что по сходному механизму возникают и гены, кодирующие не белки, как подавляющее большинство генов, а специальные, необычные РНК в нейронах головного мозга грызунов52,53.
Для дрозофилы и рыб мы видим, однако, что указанные гены, как предполагают, возникли не просто из какой-то "негенной" последовательности, а из сигнальной или интрона предсуществовавшего гена. Так, ген Sdic плодовой мушки является примером быстрых изменений генной структуры: две его половины сливаются вместе из двух родительских генов. Полагают, что интрон от одного родительского гена трансформируется в последовательность экзона, а прежняя последовательность экзона изменяется в промотор и регулирующие последовательности, приобретая новые функции в жгутиках спермы дрозофилы 46,47.
Для антифризного белка антарктических рыб отмечено, что появление участка гена из предсуществовавшего интрона гена трипсиногена вероятно40. Исходная последовательность, из которой произошло возникновение части нового гена, кажется весьма короткой (9 нуклеотидов). На родство же с геном трипсиногена указывает существование химерного гена, кодирующего одновременно как тот антифризный белок, так и трипсиноген. В то же время, у арктических рыб ген аналогичного белка, в отличие от антарктических, не имеет последовательности, идентичной гену трипсиногена48–51.
Что же касается примеров с необычными генами, кодирующими специальные РНК52,53, то обращение к первоисточникам продемонстрировало следующее. Эти гены, по-видимому, являются результатом альтернативного сплайсинга (если сказать просто — то см. выше механизм 6), когда между двух экзонов происходит вставка мобильного элемента (транспозона) — конкретно Alu для BC200 РНК (Alu распространен в геноме человека и грызунов)53 или повтора ID для BC1 РНК54. Скажем здесь, что столь известные и популярные ныне мобильные элементы Alu (входящие в состав 5% генов человека 40) сами имеют своим источником генную информацию — они произошли из гена, кодирующего 7SL РНК55.
Понятно, что столь необычные гены, которые кодируют не белки, а РНК, — это не совсем удачный пример механизма макроэволюции генома. Такие гены — слишком "частный случай", и нас должны интересовать другие экспериментально показанные факты происхождения генов de novo, из некодирующих последовательностей. Как было видно выше, во всех трех свежих обзорах молекулярных генетиков-эволюционистов имеется всего два таких примера: ген дрозофилы 40,46,47 и ген антифризного белка антарктических рыб40,48–51, фрагменты которых могут иметь своим источников некодирующие участки — интроны.
Автор представленного вам обзора начал искать и другие аналогичные примеры. Вот лекция on-line по молекулярной биологии зарубежного автора доктора Дугласа Смита, которая называется: "Эволюция генома"56]. Основной упор сделан на дупликации уже предсуществовавших генов. Ни о каком происхождении генной информации из некодирующих участков ДНК не идет и речи, хотя, конечно, в эволюционном развитии геномов доктор Д. Смит не сомневается.
А вот еще обзор 2002 г. по эволюции генома (немецкие авторы)57. Рассмотрено происхождение геномов бактерий. Помимо уже известных нам механизмов, связанных с умножением, перетасовкой, перегруппировкой и передачей уже имеющейся генной информации, упоминается и о возможности генезиса (возникновения) генов de novo, но данных о подобных генах авторы57 не привели.
Наконец, процессы эволюции генома в подробнейших схемах, представленные на одном из зарубежных научных (или учебных) сайтов58. Происхождение из интронной последовательности отсутствует, хотя и приведен механизм, связанный с альтернативным сплайсингом вкупе со вставкой между экзонами мобильного элемента — Alu. Указано, правда, что это — эволюция "нефункциональных" семейств генов. И, кроме того, мы уже знаем, что сам транспозон Alu произошел из кодирующего гена55.
Но вот попалась работа 2003 г. бывших россиян — молекулярных биологов, работающих в США (про одного из них мне известно, что он там с очень давних пор)59. Даже в названии указано, что статья в том числе — о возникновении функциональных (кодирующих) частей генов из ранее интронных последовательностей. Оказалось, однако, что работа во многом теоретическая. Так, разобран механизм возникновение фрагмента новой кодирующей последовательности из примыкающего к экзону интрона при "сдвиге рамки считывания" (см. выше) и приведены четыре примера генов (в том числе генов человека), для которых имеются гомологии фрагментов последовательностей с интронными. Но ссылок на оригинальные работы нет: бывшие россияне просто привели собственные расчеты и прикидки на базе мировых данных для последовательностей ДНК известных генов.
И кажется лишним упоминание о том, что ни один из представленных отставными российскими59 примеров не упоминается в каком-либо другом разобранном нами обзоре по эволюции генома40,44,45,57. По крайней мере, в контексте "интронной гипотезы" (а экспериментальные объекты в соответствующих списках литературы я не сверял).
Тем не менее, вашему покорному слуге все-таки встретился в литературе еще один пример. А именно: образование нового экзона из гена рецептора тиреоидного гормона и гена вируса, когда также предполагают формирование кодирующей последовательности из интрона (статья 1992 г. [60]). Этому явлению, ясно, придается широкий эволюционный смысл60.
Лично мне малопонятно: почему в обзоре 2003 г. [40], когда собирали единичные данные о возникновении новых генов de novo, забыли про работу 1992 г. [60]. И малопонятно, почему бывшие российские в своем труде 2003 г. [59] не привели примеры с генами белков дрозофилы, антарктических рыб и с генами тех необычных РНК нейронов. Странно: ведь каждый даже предположительный пример возникновения генов de novo, из первоначально интронных последовательностей, молекулярным эволюционистам должен быть крайне важен. Впрочем, авторам обзора [40], как конкретным специалистам, виднее: может, результаты работы 1992 г. [60] позже не подтвердились.
Итак, что же показал наш кажущийся вполне репрезентативным и информативным поиск? А он показал, что, несмотря на все развитие молекулярной генетики, два-три гена — это пока, видимо, все, что касается обоснованных предположений конкретно молекулярных генетиков-эволюционистов о возникновении новых генов из ранее некодирующих последовательностей ДНК. Да и то — полагают, что эти гены (скорее, их части) возникают все-таки из частей уже существовавших генов (из интронов). Пример же с появлением гена одной формы РНК нейронов путем альтернативного сплайсинга с участием транспозона Alu сюда не годится: сам Alu исходно произошел из гена55. Правда, остается еще одна форма РНК нейронов, ген которой имеет вставку последовательности ID54. Источник последней мне неизвестен.
Ладно: пусть будет три-четыре примера происхождения из "некодирующего", а не два-три.
Черновая расшифровка генома человека (полностью идентифицирована только последовательность нуклеотидов) продемонстрировала, что, в отличие от бактерий, некодирующих последовательностей в нем более, чем на порядок больше, чем генов. Однако и генов много больше, чем у бактерий и дрожжей, и те генные локусы сложнее4. Информации же закодировано и вовсе неизмеримо больше. В научно-популярной литературе и в СМИ можно встретить утверждения типа: мы, дескать, по своему геному на 60% сходны с дрозофилой и на 90% — с мышью. Это является неправильной интерпретацией результатов черновой расшифровки генома человека. Если для дрожжей, дрозофилы и мыши все их гены известны, то для человека — далеко нет, а те, что известны, часто идентифицированы именно по гомологии с уже открытыми генами дрожжей, мышей и дрозофилы. Точно установленных генов человека 22.000, канонизировано порядка 31.0004, но есть сообщения некоторых мировых лабораторий о том, что у них имеется база данных на 120.000 и даже 140.000 генов. Интуитивно же многие эксперты склоняются к тому, что потолок генома у Homo sapiens — 120 тыс. генов61.
Отсюда вопрос: поскольку основными механизмами возникновения новых генов является перегруппировка, перетасовка и умножение уже имеющейся кодирующей генной информации, то возможно ли путем такого "Тришкиного кафтана" самопроизвольное (пусть и под контролем естественного отбора) столь невероятно большое увеличение информации в количественном и качественном смысле как, скажем, путь от генома дрожжей и дрозофилы до генома человека? Ведь "интронной гипотезой" мы пока что можем пренебречь, поскольку имеем всего два-три таких примера (для генов, кодирующих белки), в то время как примеров возникновения генов из уже предсуществующих кодирующих последовательностей, согласно молекулярным генетикам-эволюционистам, много больше, и такие механизмы встречаются гораздо чаще. Некоторые из них даже называют "основными"40,44,45,56–58.
Ряд математиков и биофизиков, в том числе специалистов по информатике, стоящих на креационных позициях, утверждают однозначно: такое значительное самопроизвольное увеличение информации из уже имевшей место невозможно3,8,9,62–64 (есть и другие примеры). Автор представленного вам обзора не является ни математиком, ни специалистом по информатике, однако на уровне своей интуиции чувствует, что все это именно так. Вот только выразить в математических терминах не удается. В голове же крутится фраза из "Короля Лира": "Из ничего не выйдет ничего".
Вот, и опрошенные мною специалисты-программисты, верящие в эволюцию, оказались не способны придумать нормальных примеров того, чтобы информация усложнялась сама по себе. Я спрашивал у неких авторитетных, среди своих, родных. Они сразу начинают приводить в пример компьютерные программы, которые так созданы, что способны усложняться сами по себе. Им говоришь: ну, а сами-то компьютерные программы кто создал? Не ваш ли разум? Неужели ваш разум — это нечто сродни слепому естественному отбору? Но они такого почему-то не понимают.
И подведем итог разделу: достаточно углубленный анализ конкретных экспериментальных работ из области именно молекулярной эволюции продемонстрировал, что гены, называемые новыми, образуются в подавляющем большинстве случаев только из старых, кодирующих последовательностей. То есть, из уже имеющейся генной информации. В крайнем, чрезвычайно редком случае — из некодирующих частей, но кодирующих генов. Можно ли даже предполагать, что более простой геном способен эволюционировать в неизмеримо больший по размеру и более сложный? Мне, как и креационистам, математикам и информатикам3,8,9,62–64, подобная Тришкина гипотеза кажется невероятной.
... ложным учением, не гнушаясь при этом превратно истолковывать святоотеческие писания. Не существует доказательств макроэволюции На самом деле нет ни одного доказательства макроэволюции. Об этом много писалось в креационной литературе (например, Дж. Сарфати "Несостоятельность теории эволюции". Москва. Паломник. 2002; С. Вертьянов "Происхождение жизни: факты, гипотезы, доказательства". Свято-Троицкая ...
... labyrinthine morphology for evolution of human bipedal locomotion. Nature, 369: 645–648. (в русском изложении: Карл Виланд. Новые данные: только человек когда-либо обладал прямохождением - в альм. «Сотворение», вып.2, М., 2004, и на www.slovotech.narod.ru )). 5 . Schweitzer M.H. et. al., Heme compounds in dinosaur trabecular bone // Proc. Natl. Acad. Sci. U.S.A. 1997. V. 94. № 12. P. 6291–6296. ...
... , а поэтому они играют более важную роль в эволюции. Принципиально важное значение имеет тот факт, что эти мутации случайны, иными словами, они не направленны. 3. Центральная догма и принцип Вейсмана принимаются. 4. Эволюция осуществляется путем изменения частот генов. 5. Эти изменения могут происходить в результате мутаций, поступления генов в популяцию и оттока их из нее, случайного дрейфа и ...
... серьезных доказательств самозарождения жизни (даже в виде самой маленькой живой клеточки, способной создать себе подобные), а то, что они предъявляют – не более чем теории (гипотезы). Что ж, их труды идут на пользу теории научного креационизма! А теперь предоставлю информацию по иным противоречиям в биологии (и в других науках), с которыми сталкивается теория эволюции. ХОТЯ ЭТА ИНФОРМАЦИЯ НЕ ...
0 комментариев