2.2 ЗЕМЛЯ

Если основной поток солнечного излучения в видимом и инфракрасном диапазоне необходим для существования биосферы, то солнечное рентгеновское и ультрафиолетовое излучение губительно для живой материи. К счастью, практически все оно поглощается еще в атмосфере Земли при ионизации ее верхних слоев. Образующаяся в результате этого на высотах от 80 до нескольких сотен километров оболочка, в которой плазма соседствует с нейтральными атомами и молекулами, называется ионосферой. Ионосфера - ближайший к поверхности Земли слой, проводящий электричество. Она лежит на изоляторе - нейтральной атмосфере. В отличие, например, от солнечного ветра, ионосфера "умеет" проводить ток поперек силовых линий магнитного поля. Эту способность создают частые соударения ионов и электронов с нейтральными атомами, в большом количестве присутствующими на таких высотах. Сталкиваясь, заряженные частицы меняют

-7-

направление движения и переходят от одной силовой линии к другой, разрушая их изоляцию.

От потока солнечных космических лучей и солнечного ветра Землю защищает магнитный щит. Хотя эту оболочку невозможно увидеть, люди издавна пользовались земным магнитным полем для определения направления при помощи компаса. После догадки жившего в XVI веке английского физика Уильяма Гильберта, что Земля - огромный магнит, стало понятно, что геомагнитное поле существует и в околоземном пространстве. Если на ее поверхности величина магнитного поля составляет (3-5)ґ10-5 тесла, в зависимости от широты места измерения, то с удалением от Земли магнитное поле ослабевает пропорционально третьей степени расстояния и скоро становится достаточно слабым, чтобы ощущать воздействие межпланетной среды.

Солнечный ветер у орбиты Земли сильно разрежен и непостоянен - средняя концентрация частиц в нем составляет около 1-10 см-3, скорость - 250-1000 км/с, величина межпланетного магнитного поля - (1-10)ґ10-9 тесла. Так как заряженные частицы неохотно меняют силовые линии магнитного поля, поток солнечного ветра не смешивается с геомагнитным полем и околоземным плазменным населением, а обтекает их, образуя геомагнитную полость - магнитосферу Земли. Граница магнитосферы - магнитопауза - проходит там, где давление солнечного ветра уравнивается давлением геомагнитного поля. В подсолнечной точке она находится в среднем на расстоянии девяти радиусов Земли (55-60 тысяч километров) от ее центра. Полное усилие, которое солнечный ветер оказывает на магнитосферу, ничтожно, оно примерно равно весу воды в большом бассейне, но тем не менее внешние области магнитосферы, заполненные слабым геомагнитным полем, сильно искажены относительно начальной - дипольной - формы. Со стороны Солнца (дневной стороны) магнитосфера сплющивается, а с противоположной - ночной - вытягивается, образуя магнитный хвост, тянущийся на сотни радиусов Земли, более миллиона километров. А поскольку поток солнечного ветра сверхзвуковой, то перед магнитосферой, как перед сверхзвуковым самолетом, образуется ударная волна.

Внешняя магнитосфера содержит разреженную (менее 1 см-3) плазму солнечного и ионо-сферного происхождения, нагретую до миллионов и сотен миллионов градусов. Но при таких низких плотностях понятие температуры как меры теплоты объекта, находящегося в термодинамическом равновесии, становится бессмысленным и вместо температуры используют величину средней энергии заряженных частиц, выраженную в электрон-вольтах (эВ). Частица с единичным зарядом приобретает (или теряет, в зависимости от знака заряда) один электрон-вольт энергии, пройдя разность потенциалов 1 В. Температура плазмы в этих единицах составляет от 1 до 100 килоэлектрон -вольт (кэВ).

Несмотря на то, что полная масса горячих частиц внешней магнитосферы составляет всего около тонны, их роль в построении магнитосферы очень важна. Только простейшие конфигурации магнитного поля типа дипольной могут существовать в пространстве сами по себе, в создании же более сложных форм, к которым принадлежит и магнитосфера, согласно уравнениям Максвелла , должны

-8-

участвовать электрические токи. Такую замкнутую систему токов, текущих по большей части в местах резких изменений направления магнитного поля - вокруг Земли вдоль магнитопаузы (ток Чепмена-Ферраро), поперек магнитного хвоста и некоторых других, и формируют частицы плазмы.

В целом влияние солнечного ветра на магнитосферу достаточно сильно, но ее форма искаженного диполя всегда сохраняется. Так как частицы легко передвигаются вдоль силовых линий магнитного поля, особенности различных областей магнитосферы проецируются вдоль линий и на малые высоты, в ионосферу. Силовые линии из более удаленных областей подходят к Земле в более близких к полюсам районах. Приполярные районы - "полярные шапки" - всегда заполнены так называемыми "открытыми" силовыми линиями, другой конец которых уходит в межпланетное пространство. Все более близкие к экватору силовые линии замкнуты, и оба их конца упираются в Землю. Линии, наиболее удаленные точки которых находятся в окрестностях магнитопаузы и в магнитном хвосте - самых динамичных областях магнитосферы, сильно реагирующих на изменения в солнечном ветре, подходят к Земле в зонах так называемого аврорального овала, расположенных на 65-72 градусах магнитной широты. (Здесь надо помнить, что магнитные полюса смещены относительно географических и южный магнитный полюс находится на севере канадского архипелага, в точке с координатами 71° северной широты и 265° долготы). В экваториальной области к Земле подходят линии из более стабильной внутренней магнитосферы, сохраняющей дипольную конфигурацию поля.

Описанная выше схема магнитосферы была впервые предложена американскими физиками Сидни Чeпменом и Винцентом Ферраро в 30-х годах XX века. Она удачно описывала форму магнитосферы, но не могла объяснить внезапных отклонений геомагнитного поля от своего постоянного значения. Такие отклонения исторически называют геомагнитной активностью.

Более близкой к реальности оказалась предложенная в 1961 году британским ученым Джеймсом Данжи модель "открытой" магнитосферы, которая учитывала взаимодействие геомагнитного и межпланетного магнитных полей. Согласно этой модели, когда направление межпланетного магнитного поля становится противоположным направлению геомагнитного поля на дневной стороне, начинается процесс так называемого пересоединения. При сближении противоположно направленных силовых линий магнитное поле обращается в нуль и принцип вмороженности нарушается. Из "замкнутой" геомагнитной линии и "свободной" линии межпланетного поля образуются две "открытые" силовые линии, которые одним концом начинаются на Земле в полярной шапке, а другим - уходят в межпланетное пространство. Пересоединение "выгодно" с энергетической точки зрения, так как суммарная длина силовых линий уменьшается. Поток солнечного ветра сносит "открытые" линии на ночную сторону. Здесь противоположно направленные линии снова сближаются, и процесс ночного пересоединения воссоздает линии солнечного ветра и замкнутые геомагнитные линии, которые постепенно возвращаются на дневную сторону. При этом магнитосфера и ионосфера оказываются вовлеченными в круговорот - глобальную конвекцию. Интенсивность

-9-

 конвекции зависит от величины и направления межпланетного поля, а также скорости солнечного ветра, определяющей "количество" его силовых линий, падающих на магнитопаузу. Так как геомагнитное поле на экваторе направлено на север, "открывает" магнитосферу "южное" направление межпланетного поля. Когда его направление "северное", процесс пересоединения не идет и магнитосфера "закрыта".

Скорость пересоединения на ночной стороне обычно меньше, чем на дневной, поэтому в хвосте магнитосферы происходит накопление открытых силовых линий и, следовательно, магнитной энергии. Размер полярной шапки растет, и зона аврорального овала сдвигается ближе к экватору на несколько градусов. Через некоторое время (1 - 2 часа) магнитный хвост, "переполненный" магнитным полем, теряет устойчивость, процесс пересоединения на ночной стороне принимает взрывной характер, и за несколько минут избыточные силовые линии сбрасываются. Этот циклический процесс называется магнитосферной суббурей и сопровождается значительным возмущением всей внешней магнитосферы Земли. Фактически происходит обрыв части магнитного хвоста, а его остаток поджимается к Земле. В этот момент часть плазмы внешней магнитосферы становится "лишней" и сбрасывается по силовым линиям в авроральную зону ионосферы. Здесь энергичные ионы и электроны сталкиваются с нейтральными атомами и заставляют их испускать фотоны. Именно так возникают замечательные по своей красоте полярные сияния (auroras borealis - по-латыни), давшие свое название авроральной зоне.

Другое важное следствие суббури - изменения в системе магнитосферных токов. При "отрыве" магнитного хвоста электрический ток, в нормальных условиях текущий поперек хвоста, вынужден обойти этот разрыв через ионосферу, используя "резервную цепь": вдоль силовых линий к Земле, затем вдоль авроральной зоны ионосферы и обратно в хвост. Сила возникающего при этом ионосферного тока - электроджета - составляет более миллиона ампер, а магнитное поле, наводимое им на поверхности земли в авроральной зоне, вносит существенные, до 10-6 тесла (2% величины стабильного поля), вариации в геомагнитное поле. Наряду с полярными сияниями появление вариаций служит основным признаком начала суббури, а их величина, называемая индексом АЕ, - главной характеристикой силы суббури.

Направление межпланетного магнитного поля постоянно меняется более или менее случайным образом, поэтому "рядовые" суббури, связанные с "южными" полями, случаются несколько раз за сутки, независимо от текущей солнечной активности. Более известные широкому читателю магнитные бури регистрируются реже. Они непосредственно связаны со вспышками солнечной активности, а точнее, с попаданием Земли в зоны аномально интенсивного солнечного ветра и в межпланетные магнитные облака.

Величина поля в магнитном облаке у орбиты Земли возрастает до 50-100 нанотесла (1нТл = 10-9 Тл), а скорость солнечного ветра - до 1000 км/с. Эффект такого увеличения подобен смене легкого ветерка на ураган. Интенсивность магнитного пересоединения на дневной стороне возрастает на порядок, приводя к разрастанию области, занимаемой полярной шапкой. Во время сильной бури мощнейшие

-10-

магнитные суббури следуют одна за другой, а авроральная зона расширяется вплоть до умеренных широт. Конвекция, прежде незаметная на фоне взрывных процессов в хвосте, начинает доминировать, возмущая внутреннюю магнитосферу и создавая кольцевой ток, опоясывающий Землю на высоте 20-30 тысяч километров. У ее поверхности ток создает магнитное поле, направленное противоположно основному геомагнитному. Амплитуда регистрируемого в результате уменьшения полного поля называется Dst-индексом и служит основной характеристикой силы магнитной бури. Так, во время крупнейшей бури этого солнечного максимума, разыгравшейся 31 марта 2001 года и длившейся более суток, индекс Dst составил _358 нТл, а полярные сияния наблюдались даже в Москве. Энергия, выделившаяся тогда в магнитосфере Земли, составила около 5ґ1017 Дж, что примерно равно энергии взрыва 100 мегатонн тротила. [5]

Солнечный ветер вблизи орбиты Земли:

Скорость

400 – 700 

км/с
Температура

5 · 10 4 – 5 · 10 5

К
Магнитная индукция

10 -9 – 10 -8

Тл
Концентрация

1 – 10 

1/см3

Поток массы

10 8 – 10 10

кг/с
Поток энергии

10 19

Вт

Информация о работе «Солнечный ветер, особенности межпланетного пространства (Солнце – Планеты)»
Раздел: Астрономия
Количество знаков с пробелами: 57622
Количество таблиц: 16
Количество изображений: 8

Похожие работы

Скачать
31165
0
0

... , подобно остальным планетам, существами, органы которых приноровлены к особенным условиям, господствующим на этом громадном шаре». Как не похожи эти наивные представления о Солнце на гениальные мысли Ломоносова о природе нашего дневного светила. Давно ушло в прошлое религиозное поклонение светилу. Сейчас ученые изучают природу Солнца, выясняют его влияние на Землю, работают над проблемой ...

Скачать
70690
0
0

... происходящих на Земле процессов. Но не только тепло и свет получает Земля от Солнца. Различный виды солнечного излучения и потоки частиц постоянно оказывают влияние на жизнь нашей планеты. Солнце посылает на Землю электромагнитные волны всех областей спектра – от многокилометровых радиоволн до гамма-лучей. Окрестностей Земли достигают также заряженные частицы разных энергий – как высоких ( ...

Скачать
57682
0
4

... ­няя Солнечную систему. Результаты, полученные с помощью советских и американ­ских космических аппаратов, подтвердили правильность теории Паркера. В межпланетном пространстве действительно мчится направленный от Солнца поток вещества, получивший название солнечный ветер. От представляет собой продолжение расширяющейся солнечной короны; составляют его в основном ядра атомов водорода (протоны) и ...

Скачать
29960
1
7

... волна TS находится на расстоянии 80 – 100 а.е. от Солнца [8], что позволяет в ближайшие несколько лет детектировать ее измерительными приборами, установленными на космических аппаратах "Вояджер". Спокойный солнечный ветер. Согласно современным представлениям, энергия в недрах Солнца вырабатывается в ходе процессов ядерного синтеза: где e+ - означает позитрон, n- нейтрино, g - g- квант. ...

0 комментариев


Наверх