2. Свойства белков
Белки - высокомолекулярные органические вещества, характерными особенностями которых является их строго определенный элементарный состав:
Наименование элемента | Содержание элемента (в %) |
Углерод Водород Азот Кислород Сера Зола | 50-55 6,5-7,3 15-18 21-24 0-2,4 0-0,5
|
Особенно характерен для белков 15-18% уровень содержания азота. На заре белковой химии, когда не умели еще определять ни молекулярную массу белков, ни их химический состав, ни тем более структуру белковой молекулы, этот показатель играл большую роль при решении вопроса о принадлежности высокомолекулярного вещества к классу белков. Естественно, что сейчас данные об элементарном составе белков утратили свое былое значение для их характеристики.
Белки вступают во взаимодействие с самыми различными веществами. Объединяясь друг с другом или нуклеиновыми кислотами, полисахаридами и липидами, они образуют рибосомы, митохондрии, лизосомы, мембраны эндоплазматической сети и другие субклеточные стрктуры, в которых благодаря пространственной организации белков и свойственной ряду из них ферментативной активности осуществляются многообразные процессы обмена веществ. Поэтому именно белки играют выдающуюся роль в явлениях жизни. По своей химической природе белки являются гетерополимерами протеиногенных аминокислот. Их молекулы имеют вид длинных цепей, которые состоят из аминокислот, соединенных пептидными связями.
В самых маленьких полипептидных цепях белков содержится около 50 аминокислотных остатков. В самых больших - около 1500.
В настоящее время первичная структура белка выявлена примерно у 2 тысяч белков. У инсулина, рибонуклеазы, лизоцима и гормона роста она подтверждена путем химического синтеза.
Белки составляют важнейшую часть пищи человека. В наше время 10-15% населения Земли голодают, а 40% получают неполноценную пищу с недостаточным содержанием белка. Поэтому человечество вынуждено индустриальным путем производить белок - наиболее дефицитный продукт на Земле. В качестве заменителя белка перспективно также промышленное производство незаменимых аминокислот.
3. Белковый обмен
У животных и человека белковый обмен слагается из трех основных этапов: 1) гидролитического распада азотосодержащих веществ в желудочно-кишечном тракте и всасываение образовавшихся продуктов; 2) превращение этих продуктов в тканях, приводящее к образованию белков и аминокислот; 3) выделение конечных продуктов белкового обмена из организма.
Во взрослом организме в норме количество синтезируемого белка равно суммарному количеству распадающихся тканевых и пищевых белков (в сутки, т.е. азотистый баланс близок к нулю). Такое состояние называется белковым равновесием. Белковое равновесие является динамическим, так как в организме практически не создается запаса белков, и равновесие может устанавливаться при различных количествах потребляемого белка (в определенных пределах). В период роста или восстановления сил после болезни (белкового голодания) в организме наблюдается интенсивная задержка азота, азотистый баланс становится положительным. Основные процессы, связанные с белковым обменом, - дезаминирование аминокслот, взаимопревращение аминокислот, протекающее с переносом аминогрупп (переаминирование), аминирование кетокислот, распад белка на аминокислоты и новообразования белков органов и тканей, в том числе белков ферментов.
V. Обмен веществ и энергии
1. Понятие метаболизма
Метаболизм - совокупность химических реакций и сопутствующих им химических процессов в организме, в результате которых происходит поступление веществ, их усвоение, использование в процессах жизнедеятельности и выделение ненужных соединений в окружающую среду. Питательные вещества, поступающие с пищей, являются, с одной стороны, источником энергии, необходимой для осуществления всех процессов, а с другой стороны, пластическим материалом, из которого строится тело организма. Помимо трех основных классов питательных веществ - белков, жиров, углеводов, пища содержит ряд соединений - соли, витамины, не имеющие большой энергетической ценности и не выполняющие функции строительных блоков, однако играющие важнейшую роль в протекании различных биохимических реакций и участвующие в регуляции обмена веществ.
2. Биологическое окисление
При биологическом окислени от органической молекулы под действием соответствующего фермента отщепляются два атома водорода. В ряде случаев при этом между ферментами и окисленной молекулой образуется неустойчивая, богатая энергией (макроэнергетическая) связь. Она используется для образования АТФ - "конечной цели" большинства процессов биологического окисления. А два отнятых атома водорода оказываются в результате реакции связанными с коферментом НАД (никотинамидадениндинуелеотидом) или с НАДФ (никотинамидадениндинуелеотидфосфатом).
Дальнейшая судьба водорода может быть различной. При анаэробном окислении он переносится на некоторые органические молекулы. При аэробном окислениии водород передаётся на кислород с образованием воды. Основная часть цепи переноса водорода расположена в мембранах митохондрий. При этом из АДФ и неорганического фосфата образуется АТФ.
Надо отметить, что аэробное окисление намного эффективнее анаэробного. В первом случае из 1 молекулы глюкозы образуется 2 молекулы АТФ, а во втором - 36, где глюкоза "сжигается" до CO2 и воды. Это и объясняет широкое распространение и бурную эволюцию аэробных организмов.
... . Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и ...
... ; поэтому уже в лимфатическом сосуде ворсинки находятся капельки вновь образованного жира, а не глицерин и жирные кислоты. ОБМЕН ЖИРОВ. Жиры, как и углеводы, являются в первую очередь энергетическим материалом и используются организмом как источник энергии. При окислении 1г жира количество освобождающейся энергии в два с лишним раза больше, чем при окислении такого же количества углеродов или ...
... сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д. Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д. Роль сахарозы в питании человека. Переваривание сахарозы начинается в тонком кишечнике. Кратковременное воздействие амилазы слюны существенной роли не играет, так как в просвете желудка кислая среда инактивирует ...
... , уход за посевами уборка урожая озимой пшеницы в целом соответствуют зональным рекомендациям. 6. Структура посевных площадей нуждается в оптимизации. 4. Разработка элементов усовершенствованной технологии выращивания озимой пшеницы в АОО «Симферопольский» Предлагаем следующие мероприятия по усовершенствованию технологии выращивания озимой пшеницы: - оптимизировать структуру посевных ...
0 комментариев