2. Единицы биологической активности.
Выражение величин биологической активности антибиотиков обычно производят в условных единицах, содержащихся в 1 мл раствора (ед/мл) или в 1 мг препарата (ед/мг). За единицу антибиотической активности принимают минимальное количество антибиотика, способное подавить развитие или задержать рост стандартного штамма тест-микроба в определенном объеме питательной среды.
Единицей антибиотической активности пенициллина считают минимальное количество препарата, способное задерживать рост золотистого стафиллококка штамм 209 в 50 мл питательного бульона.
Для стрептомицина единица активности будет иной, а именно: минимальное количество антибиотика, задерживающее рост E. сoli в одном миллилитре питательного бульона.
После того как многие антибиотики были получены в химическом чистом виде, появилась возможность для ряда из них выразить условные единицы биологической активности в единицах массы.
Установлено, что 1 мг чистого основания стрептомицина эквивалентен 1000 единицам биологической активности. Следовательно, одна единица активности стрептомицина эквивалентна одному микрограмму (мкг) чистого основания этого антибиотика. В связи с этим в настоящее время в большинстве случаев количество стрептомицина выражают в мкг/мг или в мкг/мл. Чем ближе число мкг/мг в препаратах стрептомицина стоит к 1000, тем, следовательно, чище данный препарат, тем меньше он содержит балластных веществ.
У таких антибиотиков, как карбомицин, эритромицин, новобиоцин, нистатин, трихотецин и некоторых других, одна единица активности эквивалентна или приблизительно эквивалентна 1 мкг вещества.
Однако у ряда антибиотиков единица биологической активности значительно отличается от 1 мкг вещества. Например, 1 мг чистого основания неомицина содержит 300 ед. активности. Поэтому 1 единица активности этого антибиотика эквивалентна 3,3 мкг. Для бензилпенициллина 1 ед активности эквивалентна примерно 0,6 мкг, так как 1 мкг антибиотика содержит 1667 ед. (оксфордских). Для фумагиллина за единицу фагоцидного действия принято брать 0,1 мкг чистого вещества. 1 единица бацитрацина эквивалентна 20 мкг вещества.
Соотношение единиц биологического действия (ед.) некоторых стандартных антибиотиков и единиц их массы приведено в таблице 5.
Таблица 5.
Соотношение единиц действия некоторых антибиотиков и единиц массы этих антибиотиков (по Герольд, 1966).
Антибиотик - стандарт | Ед/мг | Единица массы |
Альбомицин (сульфат) | 700000 | Нет |
Бацитрацин | 52 | Нет |
Эритромицин (основание) | 1000 | 1 мкг основания |
Хлортетрациклин (хлоргидрат) | 1000 | 1 мкг чистого хлоргидрата |
Карбомицин (основание) | 1000 | 1 мкг основания |
Окситетрациклин (дигидрат) | 925 | 1 мкг чистой безводной амфотерной формы |
Пенициллин (натриевая соль) | 1667 | 0,587 мкг чистой кристаллической калиевой соли |
Полимиксин В (сульфат) | 7200 | Нет |
Саркомицин | 12 | Нет |
Тетрациклин (тригидрат) | 890 | 1 мкг чистой безводной амфотерной формы |
Стрептомицин (сульфат) | 800 | 1 мкг чистого основания |
Биомицин (сульфат) | 745 | 1 мкг чистого основания |
а) Пенициллин - антибиотик, образуемый филаментозным грибом.
Огромная группа организмов, принадлежащих к грибам, образует большое число (около 400) разнообразных антибиотических веществ, отдельные представители которых завоевали всеобщее признание в качестве лечебных средств. Основная же часть грибных антибиотиков не нашла еще практического применения главным образом в силу своей высокой токсичности.
В медицинской и сельскохозяйственной практиках имеют значение ограниченное число антибиотиков, образуемых некоторыми видами грибов, а именно: пенициллин, фумагиллин и некоторые другие.
Пенициллин (Penicillin).
Известный английский бактериолог Александр Флеминг опубликовал в 1929 г. сообщение о литическом действии зеленой плесени на стафиллококки. Флеминг выделил гриб, который оказался Penicillium notatum, и установил, что культуральная жидкость этой плесени способна оказывать антибактериальное действие по отношению к патогенным коккам.
Культуральная жидкость гриба, содержащая антибактериальное вещество, названо Флемингом пенициллином.
Попытки Флеминга выделить активное начало, образуемое Penicillium, не увенчалось успехом.
Несмотря на это, Флеминг указал на перспективы практического применения обнаруженного им фактора.
Спустя примерно десять лет после сообщения Флеминга Е. Чейн начал с конца 1938 г. изучать пенициллин. Он был убежден, что это вещество - фермент. В 1940 г. Флори и Чейн получили индивидуальное соединение пенициллина, который оказался не ферментом, а низкомолекулярным веществом.
Об антагонистических свойствах зеленой плесени (Penicillium) было известно задолго до наблюдений Флеминга. Следует указать, что еще в глубокой древности индейцы из племени майя использовали зеленую плесень, выращенную на зернах кукурузы, для лечения ран. Философ, врач и естествоиспытатель Абу-Али Ибн-Сина (Авиценна) рекомендовал использовать плесень при гнойных заболеваниях.
Ибн-Сина написал пятитомный "Канон врачебной науки", который был впервые переведен на латинский язык и издан в Европе через 400 лет после его смерти - в 1437 г. На русском языке "Канон" издан лишь в 1960 г. Авиценна утверждал, что заразные заболевания вызываются невидимыми для глаза живыми возбудителями, которые могут передаваться от больного к здоровому через воздух и воду. Заключение это сделано за 600 лет до изобретения микроскопа.
В русской народной медицине с давних времен применялись для лечения ран присыпки, состоящие из зеленой плесени.
В работах русских ученых Манассеина и Полотебнова в 1871 - 1872 гг. указывалось на отношение Penicillium glancum к разным бактериям. Полотебнов впервые в научно-клинической обстановке изучил применение зеленой плесени, показав при этом практические ценные результаты. Манассеин установил, что молодая культура плесени подавляет рост некоторых бактерий. В 1877 г. русский врач Лебединский доложил о подавлении плесенью бактерий желудочно-кишечного тракта.
Английский физик Тиндаль описал в 1876 г. способность Penicillium подавлять бактерии, находящиеся в жидкости, но объяснял это явление чисто физическими причинами.
Таким образом, приведенные данные показывают, что человечество на разных уровнях своего развития знало о целебных свойствах зеленой плесени. Однако, эти сведения носили разрозненный характер и касались лишь воздействия самого гриба на микроорганизмы. В то время не могло быть и речи о выделении и изучении активного начала, образуемого плесенью.
И лишь когда в 1940 г. Флори и Чейн получили препараты (пенициллин) в очищенном виде, после этого появился широкий научный интерес к этому антибиотическому веществу.
Изучение пенициллина в Советском Союзе было начато З. В. Ермольевой.
В 1942 г. под руководством Ермольевой в лаборатории биохимии микробов Всесоюзного института экспериментальной медицины в Москве был получен первый отечественный пенициллин - крустозин, сыгравший огромную роль в спасении жизней воинов Советской Армии, раненных на полях сражений Великой Отечественной войны.
В январе 1944 г. Москву посетила группа иностранных ученых, среди которых был профессор Флори, привезший с собой английский штамм продуцента пенициллина. Сравнение двух штаммов (советского и английского) показало, что советский штамм образует 28 ед/мл, а английский - 20 ед/мл (Ермольева, 1967).
После того как было установлено, что пенициллин обладает мощными лечебными свойствами, начались интенсивные поиски продуцентов этого антибиотика. В результате большого числа работ удалось установить, что пенициллин могут образовывать многие виды Penicillium (Penic. chrysogenum, Penic. bericompactum, Penic. nigricans, Penic. turbatum, Penic. steckii, Penic. corylophilum), а также некоторые виды Aspergillus (Asp. flavus, Asp. flavipes, Asp. janus, Asp. nidulans и др.). есть указания, что пенициллин образуется также термофильным организмом Malbranchia pulchella (см. Беккре, 1963).
Первые выделенные из естественных субстратов штаммы Penicillium как наиболее активные продуценты пенициллина образовывали не более 20 единиц (12 мкг) антибиотика на 1 мл культуральной жидкости. Даже промышленное производство этого ценнейшего препарата было начато при активности культуральной жидкости не выше 30 мкг/мл или 50 ед/мл. насколько низка эта активность, можно судить по тому факту, что в настоящее время в промышленных условиях получают культуральные жидкости с содержанием пенициллина более 15000 ед/мл, а отдельные штаммы способны синтезировать антибиотик в количестве до 25 тыс. ед/мл.
Получение высоких выходов антибиотика достигнуто в результате изучения условий его образования и селекции наиболее активных штаммов продуцента пенициллина.
б) Действие пенициллина на бактерии.
Вопросу рассмотрения антибиотической активности пенициллина в отношении ряда микроорганизмов уделено достаточно много внимания. Установлено, что пенициллин оказывает антимикробное действие в отношении некоторых грамположительных бактерий (стафиллококков, стрептококков, диплококков и некоторых других) и практически неактивен в отношении грамотрицательных видов и дрожжей.
Высокие концентрации пенициллина (10 мг/мл) вызывают гибель клеток гаплоидного штамма дрожжей Saccharomyces cerevisiae и E. coli (Lingel, oltmanns, 1963).
По характеру действия на микроорганизмы пенициллин является бактериостатическим и при определенных концентрациях бактерицидным антибиотиком.
Различные типы пенициллинов обладают различной степенью биологической активности. В особенности это различие заметно в опытах in vivo (таблица 8).
Таблица 8.
Сравнение биологической активности различных типов пенициллинов в отношении некоторых микроорганизмов в опытах in vivo.
Тест - организм | Относительная активность | |||
Бензилпенициллин (G) | 2-пентилпенициллин (F) | n-гептилпенициллин (K) | Оксибензилпенициллин (Х) | |
Spirochaeta novyi Pneumococcus типа 1 Strept. haemolitycus Strept. pyogenes Treponema pallidum | 100 100 100 100 100 | 55 85 100 50 17 | 35 17 60 9 9 | 22 140 500 260 5 |
Как следует из данных таблицы, n-гептилпенициллин менее активен, чем остальные типы пенициллинов. Это, по-видимому, связано с тем, что n-гептилпенициллин значительно быстрее инактивируется в организме.
Чувствительные к пенициллину микроорганизмы относительно легко и быстро приобретают устойчивость к антибиотику. Так, Staph. aureus прекращает развитие при концентрации пенициллина 0,05 - 0,06 ед/мл в среде, но уже при 20 последовательных пересевах с постепенно увеличивающимися концентрациями антибиотика устойчивость стафилококка возрастает в 700 раз, т.е. для остановки роста бактерии требуется концентрация пенициллина равная 42 ед/мл, а после 40 пересевов его устойчивость возрастает более чем в 5500 раз.
Микроорганизмы, приобретшие устойчивость к одному из типов пенициллина, как правило, резистентны и к другим типам пенициллина.
У некоторых бактерий устойчивость к пенициллинам сопровождается способностью образовывать пенициллиназу.
В ряде случаев микроорганизмы с приобретением устойчивости к пенициллину теряют вирулентность. Но вирулентность восстанавливается после нескольких пассажей через животных и при этом сохраняется резистентность к антибиотикам.
Таблица 9.
Различные типы пенициллинов и строение их радикалов
Название пенициллина | Строение радикала (R) | |
Общепринятое | условное | |
Бензилпенициллин n-Оксибензилпенициллин 2-Пентенилпенициллин n-Гептилпенициллин n-Амилпенициллин Феноксиметилпенициллин Аллилмеркаптометилпенициллин | G X F K ДигидроF V O |
Таблица 10.
Пенициллины, полученные в результате смешанного (биологического и химического) синтеза (полусинтетические пенициллины).
Тип пенициллина | Общепринятое название | Строение радикала |
Кислотоустойчивые препараты | ||
a-Феноксиэтилпенициллин | Фенетициллин | |
a-Феноксипропилпенициллин | Пропициллин | |
a-Феноксибензилпенициллин | Фенбенициллин | |
Пенициллиназоустойчивые препараты | ||
2-6-диметоксифенилпенициллин | Метициллин | |
Кислото- и пенициллиназаустойчивые препараты | ||
5-метил-3-фенил-4-изоксиазолилпенициллин | Оксациллин | |
2-этокси-1-нафтилпенициллин | Нафциллин | |
2-бифенилпенициллин | Дифенициллин | |
3-О-хлорфенил-5-метил-4-изооксазолил | Клоксациллин | |
Кислотоустойчивые и широкоспектровые препараты | ||
a-d-(-)Аминобензилпенициллин | Ампициллин |
а) Стрептомицин (Streptomycin) - аминогликозидный антибиотик.
В группу аминогликозидных антибиотиков включаются биологически активные соединения, содержащие в молекулах гликозидные связи. К этим антибиотикам относятся стрептомицины, неомицины, канамицины, гентамицины, гигромицин и некоторые другие вещества.
Антибиотики этой группы имеют большое практическое значение, многие из них применяются в медицинской практике.
Актиномицет, образующий стрептомицин, впервые выделен в лаборатории микробиологии Раттерского университета в 1943 г.
Первое сообщение о выделении антибиотика было сделано Шатц, Буги и Ваксманом в январе 1944 г. Антибиотик получил название стрептомицин (от родового названия актиномицетов Streptomyces), а организм, образующий этот антибиотик, был определен как Streptomyces griseus.
Стрептомицин образуют не только штаммы Act. Streptomycini, но и другие актиномицеты - Act. bikiniensis, Act. raneus, Act. humidus, Act. reticuli, Act. griseocarneus, Act. mashuensis.
Актиномицет, продуцирующий стрептомицин, как и другие виды актиномицетов, может размножаться с помощью спор или отдельных участков мицелия.
Культура актиномицетов вообще и Act. streptomycini в частности, весьма вариабельны. На изменчивость актиномицетов оказывают влияние условия их культивирования и, в особенности, состав среды. На более богатых по составу средах наблюдается более быстрая изменчивость актиномицетов.
В результате изменчивости продуцента стрептомицина нередко появляются аспорогенные формы, т.е. формы, лишенные воздушного спороносного мицелия. Как правило, эти варианты или вообще неактивны, или же образуют незначительное количество стрептомицина.
Снижение образования антибиотика наблюдается и у вариантов с усиленной стимуляцией.
Образующиеся в результате изменчивости Act. streptomycini варианты могут отличаться от исходной культуры окраской воздушного мицелия; последний может быть белым, беловато-палевым, светло-серым, серым и серо-зеленым. Различные варианты отмечаются друг от друга по величине и форме колоний. Встречаются так же формы, неспособные образовывать стрептомицин. Однако установить какие-либо цитологические различия между активными и неактивными вариантами не удалось.
б) Антибиотические свойства стрептомицина.
По отношению к стрептомицину все микроорганизмы условно можно разделить на три группы (Шемякин, Хохлов и др., 1961).
1. Весьма чувствительные микроорганизмы, которые подавляются в большинстве случаев при концентрации стрептомицина 10 мкг/мл. союда можно отнести организмы, принадлежащие к следующим родам: Bacillus, Bordetella, Brucella, Klebsiella, Mycobacterium, Bacteroidum и некоторые другие.
2. Умеренно чувствиетльные. Для подавления которых in vitro необходимо иметь концентрацию стрептомицина в пределах 10 - 100 мкг/мл. К этой группе относятся многие бактерии из родов Aerobacter, Corynebacterium, Diplococcus, Proteus, Staphylococcus, Strepticoccus, Vibrio.
3. Устойчивые формы микробов, для подавления которых необходима концентрация антибиотика, превышающая 100 мкг/мл. сюда относятся виды Bacteroides, Clostridium, некоторые виды Proteus, многие виды грибов, дрожжей, риккетсий, вирусы.
Итак, различные организмы по-разному реагируют на присутствие в среде стрептомицина. Степень антимикробного действия антибиотика также различна в отношении различных видов организмов (таблица 11).
Таблица 11.
Антибиотическая активность стрептомицина in vitro.
Микроорганизм | Концентрация стрептомицина (мкг/мл), вызывающее подавление | ||
Наиболее чувствительные штаммы | Наиболеее устойчивые штаммы | Большинство штаммов | |
Aerobact. aerogenes Bac. anthracis Bac. megatherium Bac. subtilis Candida albicans Clostridium botulinum Corinebact. giphtheriae Diplococcus pneumniae E. coli Mycob. tuberculosis Proteus vulgaris Ps. aeroginosa Bact. thyphi Bact. dysenteriae Bac. cereus | 0,300 0,250 0.250 0.056 - - 0.400 0.500 0.015 0.100 1.000 0,100 0,004 2,000 0,830 | 1000 10 4 128 - - 200 50 >1000 12,5 >1000 1000 20 8 2 | 25 5 2 25 Устойчивы >> 20 25 25 5 15 50 5 5 1 |
Наряду с тем, что стрептомицин подавляет рост многих видов микроорганизмов, к нему довольно легко появляется устойчивость, возникают формы бактерий, резистентные к стрептомицину. По данным Прайса (Price et al., 1947), повышение устойчивости к стрептомицину в 1 000 раз возникает у золотистого стафилококка всего лишь через три пассажа на бульоне с возрастающими концентрациями антибиотика, а у Bact. typhi повышение устойчивости в 22 600 раз происходило через 14 пассажей.
Образование устойчивых форм бактерий к стрептомицину происходит также in vivo. Приобретенная к стрептомицину устойчивость сохраняется у организмов довольно длительное время. С возникновением устойчивости появляются некоторые изменения в характере обмена веществ. так, у резистентного к стрептомицину хромогенного микроорганизма происходит резкое изменение его окраски. Стрептомициноустойчивая форма синегнойной палочки теряет способность образовывать пигмент, изменяются и некоторые другие стороны обмена.
Однако у устойчивых и чувствительных к стрептомицину штаммов бактерий не наблюдается заметных различий в вирулентности.
В ряде случаев под действием стрептомицина в опытах in vitro возникают не только устойчивые к нему штаммы, но и зависимые от стрептомицина формы, способные развиваться только в присутствии данного антибиотика.
Описаны случаи, когда штаммы менингококка, Mycob. ranae и другие микроорганизмы развиваются лишь на среде, содержащей от 100 до 150 мкг/мл стрептомицина.
Стрептомициноустойчивые и зависимые от стрептомицина штаммы обычно получаются из чувствительных форм микроорганизмов. Соотношение между чувствительными, устойчивыми и зависимыми от стрептомицина штаммами изображено на рисунке.
... применены только к новым веществам, которые только вводили в практику к моменту принятия рекомендаций, но не к "старым", которые находились к тому времени в длительном использовании. Позиции в отношении этой проблемы стран Европейского Сообщества и США значительно расходятся. Компетентные органы США пока не видят достаточной аргументации для запрещения использования пенициллинов или тетрациклинов ...
... и губят их корни. Еще один способ классификации гербицидов основан на времени их применения, например, до посева, до появления всходов и т.д. В их числе наиболее широкое применение в сельском хозяйстве находят производные хлорфеноксиалкановых кислот, симметричного триазина, мочевины, тиокарбаминовой, хлорированных алифатических и бензойной кислот. Гербициды в основном значительно менее токсичны ...
... Они не против проведения исследований над ГМО в закрытых лабораториях, но против распространения новоявленных организмов в природе, по их мнению, это может привести к экологической катастрофе всю планету. Интенсификация сельского хозяйства на Западе уже привела к тому, что овощи, фрукты и мясо утратили свои реальные вкусовые качества. Критерии отбора таковы, что овощи и фрукты должны дозревать в ...
... , а это резко снижает валовые сборы зерна. Вот почему в общей цепи мероприятий, направленных на дальнейшее развитие сельского хозяйства правительство уделяет особое внимание развитию земледелия Нечерноземной зоны. Природно-климатические условия Нечерноземья, особенно ее центрального района, в который входят Калининградская, Московская, Рязанская, Смоленская области, в целом благоприятны для ...
0 комментариев