2.1.2. Электромагнитный метод определения параметров детонации.
Сущность электромагнитного метода измерения массовой скорости движения вещества состоит в следующем:
при движении проводника в магнитном поле на его концах наводится ЭДС индукции, которая связана со скоростью движения проводника, его длиной и напряженностью магнитного поля соотношением
где Н — напряженность магнитного поля, А/м; U — скорость движения проводника, м/с; / — длина проводника, см.
Скорость движения проводника легко найти, если известны Н. I и e.
Проводник, называемый датчиком, представляет собой полоску алюминиевой фольги, толщиной 0,15—0,25 мм и шириной 10 мм в форме буквы П, перекладина которой и является рабочей длиной датчика.
Датчик располагается в заряде перпендикулярно его оси, а затем вместе с зарядом помещается в постоянное магнитное поле так, Чтобы при движения рабочая плоскость датчика пересекала силовые линии магнитного поля. Расположение заряда с датчиком в магнитном поле показано на рис. 6.
При прохождении детонационной волны по заряду датчик вовлекается в движение веществом, перемещающимся за фронтом детонационной волны. При постоянных Н и I ЭДС 10 будет функцией только скорости датчика, которая совпадает со скоростью движения вещества.
Метод измерения предполагает наличие достаточно сильного магнитного поля, которое в течение опыта должно оставаться постоянным. Минимальная напряженность поля должна быть достаточно высокой по отношению к помехам. Кроме достаточной напряженности, магнитное поле должно обладать необходимой степенью однородности по крайней мере в том объеме, в котором происходит движение датчика.
Определение значения массовой скорости и времени химической реакции в плоскости Чепмёна-Жуге производится в соответствии с выводами теории по точке излома профиля U==U(t).
Расчет значения массовой скорости производится при помощи тарировочного графика (e — высота сигнала <h), представленного на рис. 7.
Электромагнитным методом можно одновременно на одном заряде определять скорость фронта детонации D. Для этого пользуются датчиком с 2-мя перекладинами, расположенными на расстоянии S (база), как показано на рис. 8.
При применении такого датчика осциллограмма процесса имеет вид, показанный на рис. 9.
Время между двумя пиками на осциллограмме ts представляет время, за которое фронт волны проходит расстояние S от одной ступени датчика до другой.
Зная базу и время, можно определить скорость фронта
Точность измерения лежит в пределах: D— 1%, U—3%, t-10%.
2.1.3. Метод расчета скорости детонации ВВ.
Все существующие методики расчета скорости детонации могут быть условно разделены на две группы: термодинамические и классические..
Термодинамические методики основаны на нахождении той или иной зависимости скорости детонации от теплоты взрыва, состава ПД и др. Классические — основаны на решении системы уравнения (см. выше) и законов сохранения условия Чепмена-Жуге и уравнения состояния в той или иной форме.
Как первые, так и вторые методики учитывают в основном лишь свойства ПД и не принимают во внимание тот факт, что фронт детонации (передняя граница зоны химической реакции) распространяется по не прореагировавшему ВВ и, следовательно, скорость детонации может быть в большей степени описана свойствами, заряда ВВ. Предположив, что из .свойств заряда ВВ связанных с распространением по нему детонационного фронта, в первую очередь влияние должны оказывать его волноводные свойства такие, как скорость распространения звука. Произведем оценку параметров детонации через данную характеристику и теплоту взрыва ВВ.
Анализ скорости звука и скорости детонации позволяет .установить некоторые закономерности их взаимосвязи. Разделив влияние упругой и тепловой составляющей давления и энергии на скорость распространения фронта, можно выразить ее через суммарный волноэнергетический фактор. Волновую составляющую данного фактора определяет скорость звука, а тепловую — энерговыделение в зоне химической реакции, определяющее массовую скорость.
Зависимость скорости .распространения ударной волны от скорости звука представляется в виде обобщенной ударной адиабаты
D=1,2Co+1,7Uф (35)
где .С0 — скорость звука в исходном веществе; Uф — массовая скорость на фронте процесса.
Считается, что фронт детонационной волны, распространяющийся по не прореагирующему ВВ, фактически является фронтом ударной волны, а соотношение массовых скоростей на фронте и в плоскости Чепмена-Жуге примерно равно 1,5. Тогда уравнение (35) примет вид
D=1,2Co+2,55U (36)
где U — массовая скорость в плоскости Чепмена-Жуге.
Массовая скорость ПД и максимальная теплота взрыва связаны следующей зависимостью:
(37)
где j — коэффициент реализации максимальной теплоты взрыва
В свою очередь, коэффициент реализации является функцией кислородного коэффициента a и плотности ro.
(38)
Основные характеристики параметров детонации — давление Р и показатель политропы процесса п могут быть определены по следующим формулам:
(39)
(40)
Основной сложностью методов расчета параметров детонации является описание их зависимости от плотности. Как правило, для этого пользуются формулой Кука:
(41)
где— скорость детонации при плотности ro; r — предельная плотность; М — постоянный коэффициент .Таким образом, скорость детонации зависит от максимальной теплоты взрыва, скорости звука и коэффициента реализации. Однако две последние характеристики зависят от плотности. Поэтому расчет скорости детонации для зарядов любой плотности можно вести по следующей формуле:
(42)
Так как рассмотренный метод расчета неплохо описывает влияние плотности на скорость детонации, то представляется возможным с его помощью выразить коэффициент в формуле Кука (41)
(43)
Как видно из выражения (43), данный коэффициент зависит не только от кислородного коэффициента, но и от плотности ВВ, скорости звука и максимальной теплоты взрыва. Данная методика применима для расчета скорости детонации флегматизированных и металлизированных ВВ.
(44)
где b — массовая доля добавки; -расчетная или экспериментально определяемая скорость звука в образцах с помощью ультразвукового дефектоскопа — УД10П; a — кислородный коэффициент; Qm — максимальная теплота взрыва. Скорость звука в смесевых системах может быть определена, исходя из следующего выражения:
(45)
где индекс 01 относится к взрывчатому компоненту, а 02 —к добавке (флегматизатора). Для поликомпонентной смеси скорость звука определяется последовательно, исходя из выражения (45) для бинарных смесей. Объемная скорость звука для металла и кристаллических добавок рассчитывается по продольной Cl и поперечной Ct скоростям звука
(46)
Определим параметры детонации для смеси тротила, парафина и алюминия в соотношениях 70/20/10.
Данные для расчета параметров детонации
Таблица 1.
a | М | r, г/см3 | С0, м/с | Qm, Дж*103 | |
Тротил | 0,36 | 227 | 1,66 | 2160 | 5317 |
Парафин | 338 | 0,92 | |||
Алюминий | 30 | 2,7 |
Составим процентное содержание каждого вещества в смеси:
ТНТ – 70%, Парафин - 20%, Алюминий – 10%
Найдем молекулярное содержание этих компонентов
ТНТ=700/227=3,08 Парафин=200/338=0,59 Алюминий 100/30=3,33
Приближенная реакция взрывчатого превращения данной системы имеет вид
3,08(С7Н5О6N3)+0,59С24Н50+3,33Al
Найдем кислородный коэффициент смеси:
СaHbOcNd C35,72H44,9O18,48N9,24
Скорость звука в веществе парафин
м/c
zi – количество связей zCH=50 zCC=23
ni - энергия связей nCH=95,7 nCC=4,25
М - молекулярнаямасса
r - плотность
Скорость звука в смесевых системах может быть определена исходя из формулы (45)
СТНТ/Парафин=2160*2347,3 м/c
Рассчитываем скорость для всей смеси
м/c
r0,12=1,38 г/cм3
Объемную скорость для алюминия вычисляем по формуле (46)
СAl=5500 м/c
Найдем максимальную теплоту взрыва по формуле
Qmax=QNbmax-Qобр
при А
Qmax=5317*0,7=3721,9 кДж/кг
Найдем скорость детонации по формуле (44)
r=1,483 г/см3
=5794,4 м/с
Теперь рассчитаем скорость детонации по формуле (36)
D=1,2*2160+2,55*1403,1=6169,9 м/с
Коэффициент реализации равен по формуле (38)
0,529
Массовая скорость ПД равен по формуле (37)
м/с
Давление рассчитываем по формуле (39)
Показатель политропы процесса по формуле (40)
Вывод:
... от содержания БРТТ представлена на рис.10: Рис.10. Зависимость относительной работоспособности ЭВВ от содержания БРТТ Определение показателя относительной эффективности ЭВВ с содержанием БРТТ в качестве сенсибилизатора Для оценки эффективности применения ЭВВ с конверсионными компонентами для взрывной отбойки различных типов горных пород применен комплексный критерий эффективности, ...
... новых материалов для КО, способных заменить традиционно используемые медь и алюминий и в зависимости от решаемой задачи, в большей степени отвечающих тому или иному параметру, определяющему эффективность действия КЗ, глубине проникания в преграду или специфическим свойствам, влияющим на запреградное действие КС, показал перспективность использования материалов, обладающих высоким удельным весом и ...
... и ещё неподготовленными ко взрыву взрывчатыми материалами меньше радиуса действий поражающих факторов взрыва, то существует вероятность несанкционированного детонирования всего запаса взрывчатых веществ [7,15]. При ликвидации весеннего затора на реке Белая не были соблюдены безопасные расстояния взрыва для взрывников и ящика с взрывчатыми материалами. Вследствие передачи детонации от заряда ...
... горных выработок трудоемкий процесс. Специфика геологоразведочных работ в том, что они ведутся преимущественно в условиях с не достаточно развитой инфраструктурой или при ее полном отсутствии. Проходка горных выработок может осуществляться тремя основными способами: 1) механизированным с применением специальных землеройных машин; 2) вручную с применением шанцевого инструмента; 3) с применением ...
0 комментариев