7. Сейсмическая информация по стволу и району СГ-4

 

Отражаю­щие элементы профилей ГСЗ и MOB не могут быть точно скоррелированны с геологией по стволу, поскольку скважина проходится, к сожалению, на удалении 1—1,5 км от профилей, авулканогенным разрезам присуща плохая выдержанность. Можно лишь утверж­дать, что подтвердилось общее моноклинальное строение разреза в верхней половине с углами падения слоев 45° на восток, что соответствует замерам слоистости в скальных обнажениях на по­верхности и по керну СГ-4. В прогнозном скоростном разрезе на основе дегализационных работ ГСЗ 1985 г. В.С.Дружинина были выделены и частные зоны инверсии скоростей, в т.ч. на глубинах 1500 и 2100 м. По ВСП, первый из них на фоне высокос­коростного интервала не выделен, но четко проявлен зоной дезин­теграции с резким уменьшением плотностей, а второй выделился зоной понижения скоростей до 5,9 км/с на глубине 2—2,2 км.

На прогнозном скоростном разрезе была выделена также зона инверсии скоростей на глубинах 6,3—7,5 км. Позднее методом вертикальных отражений в том же интервале зафиксирована среда с резко повышенной расслоенностью. Предположительно, она соответствует пачке осадочных пород низов ордовикской части палеозойского разреза. На профиле ОГТ ей соответст­вует на тех же глубинах система протяженных отражателей, имеющих слабое воздымание на восток и, судя по структурному рисунку, в 2 км восточное СГ-4 несогласно перекрываемых вышележащими базальтами, уже вскрытыми по СГ-4 (рис. 6). То есть объект на глубинах 6,3—6,7 км снова подтверждается. По­добная очень выдержанно распространенная ниже базальтов осадочная пачка, датированная фауной кародокского яруса ордовика, картируется на поверхности в западном борту Тагильско­го прогиба в 20 км западнее СГ-4. В связи с этим отметим, что один из важных результатов бурения СГ-4 до 5,4 км — установ­ленный факт, что для ордовикской части палеозойского разреза в районе СГ-4 остается очень узкий диапазон глубин, т. к. ниже 8—8,5 км, по данным ГСЗ , распространен явно иной комплекс (6,6—6,8 км/с, вероятно, амфиболитовых метаморфитов), хотя западнее мощности зеленосланцевых базальтов 02К—Оз и спилит-диабазового комплекса Оз—S1 достигают 6—8 км. Но во внутренней части Тагильского прогиба ,где бурится СГ-4, представляющей собой фланговую часть главной зоны базитового магматизма, на основе совместного рассмотрения геологической и геофизической информации прогнозируется резкое сокра­щение их суммарных мощностей примерно до 2 км и частич­ное замещение по латерали слоистыми отложениями удален­ных фаций. До бурения подобные точки зрения были мало обоснованными. Не исключается и вариант связи этого объ­екта с повышенной тектонической нарушенностью разреза на глубинах 6,3—7,5 км. Параметрическое значение будет иметь вскрытие этой части разреза бурением.

Интересна в рассматриваемых материалах выделенная на сейсмопрофиле MOB—ОГТ (1994—1995 гг.) сильная отражаю­щая граница, пересекающая проекцию ствола СГ-4 на глубине около 2900 м. Она имеет восточное падение, субсогласное с общим напластованием пород именновской свиты, но связывать ее с какими-либо вариациями литологии и фаций оснований нет. Для этого интервала характерно развитие грубых неминерализо­ванных трещин, по которым керн после подъема на поверхность распадается на блоки с ровными ограничениями; характерны также анизотропия физических свойств и пониженные скорости упругих волн, измеренных по керну и стволу скважины. Видимо, это сочетание признаков отвечает напряженному состоянию околоствольного массива, что косвенно подтверждается ослож­нениями бурения в пределах указанного интервала.

Позднее через уже пробуренную до глубины 5,3 км СГ-4 выполнен детальный профиль глубинного ОГТ по программе «Европроба», на одном из вариантов разреза которого четко и непрерывно на протяжении 10—13 км прослеживаются парал­лельные друг другу два отражателя, маркирующие всю структуру района бурения СГ-4. По глубине они соответствуют наиболее мощным осадочным пачкам в верхней (на глубинах 3000—3300м) и нижней (4860—5072 м) частях флишоидной толщи разреза СГ-4 (см. рис.6). Отражатели вверху имеют наклон 45°, что соответст­вует отражающим элементам на Красноуральском профиле ГСЗ и ориентировке слоистости в обнажениях и по керну СГ-4, тогда как ниже 2,5 км слоисость по керну все более выполаживается до 10 и 5° на глубинах 4—5 км (см. рис.6). На профиле ОГТ характеризуемые отражатели также очень плавно выполаживаюгся с глубиной до горизонтальных залеганий восточное СГ-4, переходящих в полого западные в восточном конце профиля. Их легко можно было бы принять за таловые надвиги с горизонталь­ными базальными поверхностями. Но изучение разреза в пере­сечениях их стволом СГ-4 показало, что оба структурных элемен­та по природе соответствуют нормальным наслоениям. В данном случае СГ-4, вероятно, выполнила важнейшую параметрическую задачу определения геологической природы одного из типов протяженных субгоризонтальных отражателей в верхней коре — если принять, что приводимый разрез — адекватное отражение реальной среды (на том же информационном массиве отстроены и другие варианты). Предполагавшийся ранее вариант, что сис­тема пологих отложений может быть обусловлена боковыми отражениями от происходящего южнее параллельно профилю разлома — в принципе вероятен, но в данном случае сомнительно существование двух строго параллельных друг другу на протяже­нии 10 км разломов. Прослеживание профилем ОГТ распростра­нения глубоко погребенной слоистой толщи с достоверно уста­новленной бурением мощностью около 2 км — это, вероятнее всего, обычная фиксируемая методом ОГТ в осадочных бассей­нах сейсмостратиграфия. Неожиданность ее в сплошном вулканогенном массиве логично объяснима: данный разрез в отличие от всех смежных формировался при устойчивом морском режиме осадконакопления в локальном грабене, занимающем всю внутреннюю часть Тагильского прогиба. По данным ранее вы­полненного Ю.С.Каретиным, затем АИ.Глушковым с соавтора­ми картирования флишоидной толщи, размеры оконгуривающего грабен ареала ее распространения на поверхности 18х70 км. Были установлены и встречные направления падения слоистости в обоих бортах грабена при почта горизонтальных залеганиях слоев в перекрывающих толщах в его центральной части, в т. ч. в скважинах н а глубинах 700—1350 м (см. рис.6). То есть вариант профиля ОГТ согласуется с независимыми геологи­ческими данными. На нем нижний отражатель в западной при-бортовой части палеорифга становится прерывистым, неотчет­ливым, видимо, соответствует типовой картине развития нарушенности бортов большим количеством мелких сбросов, разви­вающихся в процессе растяжений и погружений днища палео­рифга. В случае нижнего отражателя восточнее СГ-4 вероятна совмещенность с осадочной пачкой послойной тектонической нарушенности. В керне это проявлено в виде дискования очень жестких силицитов в результате развития грубого по­слойного кливажа в зоне мощностью 5—8 м, расположенной на 2—3 м выше литологического контакта силицитов с массивны­ми тектоническими ненарушенными породами офиолитового основания. Видимые на том же профиле ОГТ системы встречно падающих мелких кососекущих разрывных нарушений местами дают четко видимые, но очень незначительные по амплитудам (10—20 м) смещения вышеупомянутых протяженных отражате­лей, и нигде до показанных на профиле глубин 12 км не дают крупных тектонических усложнений разреза.

На том же информационном массиве ОГТ получены и от­стройки, на которых описанные выше отражатели просматри­ваются фрагментарно, вследствие нарушенности их системами очень частых субпараллельных кососекущих нарушений, более всего похожие на системы грубого кливажа. Наиболее развитая из них — с западными падениями под углами 60—70°. Она отмечена ранее в скальных обнажениях площади.

По имеющимся в районе профилям ГСЗ, МПВ-МОВ и ОГТ, геологическую природу подавляющего большинства более ко­ротких палогопадающих отражающих элементов, в т. ч. отвечаю­щих границам крупных стратиграфических подразделений верх­ней части разреза коры, никому не удалось угадать по собствен­но сейсмической информации. Только бурение дало достовер­ные результаты. Геологическая природа и значимость многочис­ленных пологих и крутопадающих систем отражающих элемен­тов на детализаиионных профилях ГСЗ и на всех прочих в районе СГ-4 ясны из того, что они не нарушают заметным образом геологический разрез, а породы монолитны во всем объеме без проявлений рассланцевания и катаклаза. Поэтому несмотря на то, что многие из систем отражающих элементов имеют на сейсмопрофилях четкое выражение, большинство их, видимо, соответствуют лишь обычным в любом скальном мас­сиве системам трещиноватости и незначительным по амплиту­дам перемещений разрывам — их слишком много и они разно ориентированные, тогда как тектоническая структура в районе СГ-4 простая и, по геологическим данным, не имеет значитель­ных разломных усложнений.

На таком фоне по-новому выглядит проблема выделения по сейсмическим данным геологически значимых разломов и контактовых поверхностей разных толш и комплексов. Наиболее крупные выдержанные по распространенности структурно-вещественные мегакомплексы коры удается выделять и прослеживать достаточно уверенно только по совокупности данных, прежде всего, о скорост­ных параметрах среды, положению в общем разрезе коры, с учетом данных по отражающим элементам и геологии поверхности, по­скольку, как показал выполненный анализ всей системы профилей ГСЗ по Уралу, такие мегакомплексы характеризуются выдержан­ностью скоростных характеристик и их типовых вариаций . Оппоненты обычно указывают на различные неоднозначности вследствие влияния на физические параметры в коре вариаций давлений, напряженного состояния, флюидного режима и других трудно учитываемых факторов. Подобное влияние имеет место в частностях, но в целом интегральные скоростные характеристики крупных распространенных на больших пло­щадях единиц разреза определяются надежно, а их латераль­ные вариации закономерно согласуются с особенностями геологии поверхности.

Заключение

 

В числе наиболее важных результатов установлено :

вскрытый разрез надежно, во всех деталях увязывается с геологией поверхности (рис. 4);

установлена полная идентичность химизма главных типов базальтов выделенных формаций в разрезе СГ-4 и распростра­ненных на поверхности;

отработка детального геохимического профиля в створе с СГ-4 показала, что афировые базальты бимодального комплекса разреза СГ-4 ниже 5075 м и картирующегося на поверхности в 4,5—7 км западнее СГ-4 вписываются в единую латеральную геохимическую зональность вместе с базальтами офиолитового спилит-диабазового комплекса оси палеоспрединга, трассиро­ванной в 10 км западнее СГ-4 , т. е. относятся к фланговым образованиям этой оси и по мере удаления от нее все более калиевые и богатые Ti, Fe;

установлены целостность и закономерная направленность строения всего вскрытого разреза, ненарушенность его надвиговьми сдваиваниями и мощными разломными зонами с катаклазом и рассланцеванием пород;

нормальным седиментационным оказался и вскрытый на глубине 5070 м контакт между риолит-андезитобазальтовым комплексом именновской свиты островодужного типа и залега­ющим ниже бимодальным комплексом офиолитового основа­ния;

для оценок информативности данных геофизики о глубин­ном строении района важно, что мощность именновского ком­плекса 4—5 км была прогнозирована В.С.Дружининым на ос­нове скоростного разреза ГСЗ, тогда как геологические прогнозы давали вдвое меньшие мощности. Подтвердились для этой части разреза и прогнозные по ГСЗ интегральные скорост­ные характеристики среды — 6,1 км/с, что оказалось близким измеренным значениям. Мощность палеозойского вулканогенно-осадочного разреза в районе СГ-4, по данным ГСЗ, прогно­зируется 7,5—8 км;

более широкими исследованиями в районе в строении земной коры Тагильской структуры установлено развитие в нижней ее части линзы типа «коромантийской смеси» (К-М) мощностью 15—20 км, сочетающееся с утонченностью собст­венно кристаллической (без К-М) части коры — 28—33 км против 37—40 км в бортах.

Оценивая первые результаты буре­ния Уральской СГ-4, необходимо под­черкнуть, что главные задачи решают­ся на средних и нижних интервалах бурения. Уже сейчас, достигнув ре­кордной для рудных районов Урала глубины и обеспечив уникальную возможность непрерывного детального изучения разреза толщиной 4 км, СГ-4 дала ряд принципиально новых дан­ных, касающихся верхней части Та­гильского прогиба. Так, установлено более крутое залегание вулканогенно осадочных комплексов западного крыла прогиба с значительным превыше­нием проектной мощности. Получены новые факты, касающиеся возраста, фациальных условий и геодинамиче­ской обстановки формирования вскры­той части разреза. Изучен цикличе­ский характер вулканизма древней островной дуги и установлены его от­личия от современных аналогов. Выяв­лены закономерности метаморфиче­ских преобразований и особенности распределения в разрезе рудной мине­рализации. Впервые для этой части Урала получена достоверная информа­ция по физическим свойствам, текто­нической нарушенности, флюидонасыщенности и геотермическому режиму такого протяженного по глубине раз­реза, что дало возможность объектив­но оценить эффективность методов на­земной геофизики, в частности, устано­вить природу сейсмических отражаю­щих площадок.

Скважина практически вплотную по­дошла к решению ряда приоритетных фундаментальных и прикладных про­блем. Уже на ближайших интервалах проходки предстоит вскрытие горизон­тов, отвечающих стратиграфическому уровню расположенных поблизости медноколчеданных месторождений. Да­лее решение принципиальных вопро­сов по выяснению структурной пози­ции, составу и рудоносности образова­ний Платиноносного пояса, цикла байкалид, зон инверсии скоростей (волно­водов) и др.

Необходимо подчеркнуть, что СГ-4 не нацелена на непосредственное вскрытие конкретных промышленно значимых рудных объектов. Ее задачи в этом направлении более широки — уловить дыхание рудообразующих про­цессов, определить их направленность, установить новые глубинные критерии минерагенического прогноза. Сообраз­но общим задачам, стоящим перед глу­бинными исследованиями рудообразующих систем , это будет иметь важное значение для их реконструк­ции и способствовать построению об­щей модели рудогенеза.

Установив стратиграфическую непре­рывность или тектоническую разоб­щенность и скученность вскрываемого разреза, проходка скважины обеспечит (на примере Урала) проверку альтер­нативных моделей геотектонического развития. В итоге Уральская СГ-4 по­зволит впервые в мире получить достоверные факты о глубинном строении, рудоносности, эволюции и геодинами­ческой природе палеозойских подвижных поясов континентов. Использова­ние полученных результатов должно обеспечить прорыв геологических ис­следований на более высокий научный уровень.­

Петрофизический разрез СГ-4

Рис.5.

Профиль глубинного ОГТ

 

Ось гравиметрической аномалии

Рис.6.

1-кабанский комплекс; ll-именновская свита; lll-гороблагодатная толща; lv-туринская свита; v-Красноуральская зона.

Содержание

Введение

1.Геологическое строение района заложения скважины СГ-4

2.Цели и задачи СГ-4

3.Прогнозные модели Уральской СГ-4

4. Геологический разрез СГ-4

5. Петрографическая характеристика горных пород

6. Результаты геофизических исследований

7. Сейсмическая информация по стволу СГ-4

Заключение

Литература

Литература

1.   Башта К.Г., Горбачев В.И., Задачи и первые результаты бурения Уральской сверхглубокой скважины // Советская геология 1991.N 8. С.51-63.

2.   Башта К.Г.,МарченкоА.И., Использование результатов бурения и исследований Уральской сверхглубокой скважины СГ-4 при региональных исследованиях // 100 лет Геологического картографирования на Урале. Екатеринбург,1997. С 211-220.

3.   Дружинин В.С.,Каретин Ю.С., Детальные сопоставления наземной и скважинной информации по району Уральской сверхглубокой скважины // Отечественная геология.1999.N 5. С.42-48.

4.   Румянцева Н.А.,и др., Уральская СГС // Сверхглубокие скважины России и сопредельных районов. С.96-118.


Информация о работе «Обзор геолого-геофизической изученности района Уральской сверхглубокой скважины СГ-4»
Раздел: Геодезия
Количество знаков с пробелами: 82927
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
47695
1
5

... К ним относятся: измерение механической скорости бурения, веса на крюке, расхода промывочной жидкости и давления на стояке, газовый и люминесцентный и др. каротаж. Данные геофизических исследований, полученные в процессе бурения могут служить в большинстве скважин надежным критерием интерпретации результатов с целью дальнейшего планирования работ на скважине (опробования объектов, отбора керна и ...

0 комментариев


Наверх