2. Потенциальная опасность использования ядерного топлива на АЭС
Условием безопасного использования любой технологии вообще и сложной технологии в особенности является знание и понимание в полном объеме потенциальных опасностей, связанных с использованием данной технологии. Основная причина использования человечеством ядерной энергии - выделение в 108 раз больше энергии в единичном акте, - делении одного ядра урана (200 Мэв), - чем в единичном акте выделения энергии, - окислении одного атома углерода (2 эв), - в традиционной тепловой энергетике. В свою очередь, увеличение выделения энергии в единичном акте означает соответствующее уменьшение потребления объема топлива в единицу времени на энергетической установке одинаковой мощности. А с уменьшением потребления объема топлива связано как уменьшение транспортных расходов, с одной стороны, так и соответствующее уменьшение количества твердых и газообразных отходов, с другой стороны. Однако же, именно выделение в 100 миллионов раз большей энергии в единичном акте содержит в себе потенциальную опасность не контролируемого выделения такого количества энергии, которое будет опасным как для целостности самой энергетической установки, так для жизни окружающих людей. Поскольку исторически ядерная энергия первоначально была использована в военных целях именно в виде не контролируемого ее выделения (ядерная бомба) и в этом качестве проявила всю свою разрушительную мощь, то развитие ядерной энергетики происходило под знаком борьбы с этой потенциальной опасностью.
Математически условие не контролируемого разгона реактора выражается очень простой формулой + Δρа.з. ≥ β,
где + Δρа.з. - положительная реактивность, вводимая в активную зону реактора;
β - доля запаздывающих нейтронов в активной зоне реактора.
Отсюда следует основное условие безопасности, которое должно всегда соблюдаться как при проектировании, так и при эксплуатации ядерных реакторов: при любом состоянии реактора должно быть + Δρа.з. β. Это условие должно достигаться как соответствующими физическими свойствами активной зоны реактора в любом его состоянии и конструкцией системы управления и защиты реактора, так и соответствующими методами управления реактором, которые использует в своей работе оператор реактора. Но следует заметить, что в известных аварийных ситуациях с не контролируемыми разгонами реактора: в январе 1961 г. на опытной АЭС "SL-1" в США и в апреле 1986 г. на ЧАЭС в СССР [1] - происходили только паровые взрывы, хотя и с выделением в активной зоне реактора энергии, многократно превышающей номинальное значение. Ядерных взрывов активной зоны реакторов при этом не происходило.
Вторым важным фактором потенциальной опасности использования ядерной энергии является получение и накопление в активной зоне реактора радиоактивных продуктов деления ядер урана. При нормальной эксплуатации ядерного реактора все продукты деления ядер урана должны оставаться внутри герметичных оболочек тепловыделяющих элементов (ТВЭЛ). Кроме того, некоторая часть радиоактивных продуктов образуется из-за облучения нейтронами конструкционных и технологических материалов в реакторе. Эти радиоактивные продукты циркулируют вместе с теплоносителем в пределах герметичного 1-го контура реакторной установки. Но технология эксплуатации реакторной установки предусматривает вывод части теплоносителя из герметичного 1-го контура для его очистки и таким образом происходит распространение радиоактивных продуктов за пределы герметичного 1-го контура. Следовательно, в конструкции не только оборудования 1-го контура реакторной установки, но и всего блока АЭС проектом должны быть предусмотрены меры защиты персонала от радиоактивного излучения и от несанкционированного попадания радиоактивных продуктов в окружающую среду. Разумеется, как при проектировании, так и при эксплуатации блоков АЭС необходимо стремиться к уменьшению санкционированных выбросов радиоактивных продуктов (твердых, жидких и газообразных) в окружающую среду.
Хотя человечество столкнулось с массированным воздействием радиоактивности на человеческий организм еще в 1945 г. при бомбардировке ядерными бомбами городов Хиросима и Нагасаки, а также при последующих испытаниях ядерного оружия и многочисленных аварийных ситуациях на реакторных установках различных типов, но, хорошо представляя воздействие больших доз радиации на человеческий организм с развитием лучевой болезни и с летальным исходом, ученые и сейчас еще не могут предсказать отдаленные генетические последствия для людей, подвергающихся постоянному внутреннему радиоактивному облучению за счет повышенного содержания радиоактивных изотопов в воздухе, воде и пище. Не исключено, что такое увеличивающееся внутреннее радиоактивное облучение приведет к мутациям на генетическом уровне, угрожающим самому существованию той или иной нации.
Вероятность выхода радиоактивных продуктов за проектные пределы их локализации существенно возрастает при возникновении нарушений и аварийных ситуаций в технологических режимах работы блока АЭС. Аксиоматически можно утверждать, что величина нарушений и аварийных ситуаций в технологических режимах работы блока АЭС зависит от степени нарушений оперативным персоналом принципов и законов действия блока АЭС, но никоим образом не зависит от причин неправильных действий оперативного персонала. Если любое государство решило построить у себя и эксплуатировать хотя бы один блок АЭС, то все в этой стране, - начиная от президента страны и кончая последним обходчиком на АЭС, - должны как 2 2=4 уяснить себе одну простую, но абсолютную истину: блок АЭС - потенциально опасная сложная технологическая система, действующая по своим природным принципам и законам, которые не может ни изменить, ни отменить ни один человек в мире, какую бы высокую должность он ни занимал. Законы эти надо знать, понимать и выполнять безусловно.
Кажется достаточно очевидным, что в принятом INSAG определении: Культура Безопасности - это такой набор характеристик и особенностей деятельности организаций и поведения отдельных лиц, который устанавливает, что проблемам безопасности АС, как обладающим высшим приоритетом, уделяется внимание, определяемое их значимостью, - "высший приоритет" и заключается в признании этой абсолютной истины на всех, - без исключения, - иерархических уровнях управления в государстве.
... , меры предупреждения, выявления и ликвидации радиационной аварии. С целью обеспечения радиационной безопасности АЭС на каждой станции создаются службы радиационной безопасности. В процессе нормальной эксплуатации АЭС службами радиационной безопасности решаются следующие основные задачи: - организация и осуществление всех видов радиационного контроля; - установление контрольных уровней ...
... . 19.10.2001 года Александр Васильевич Паламарчук назначен директором обособленного структурного подразделения концерна "Росэнергоатом" - "Волгодонская АЭС". Одновременно он же, в соответствии с приказом министра по атомной энергии Александра Юрьевича Румянцева, № 814 от 19.10.2001 года, стал директором государственного унитарного предприятия "Дирекция строящейся Ростовской АЭС". 25 декабря ...
... энергоблоком, на высоте 200 м радиоактивность не обнаруживалась, на его перекрытии отмечались уровни радиации 8-12 Р/ч, а на площадке вентиляционной трубы - от 8 до 200 Р/ч и более. Авария на Чернобыльской АЭС явилась одной из тяжелейших в атомной энергетике. Ее последствия приобрели значительные, во многом непредсказуемые масштабы. Они стали следствием, во-первых, нерационального размещения АЭС ...
... или технологических процессов; – при выборе технического решения обеспечить малоотходность производства и максимальную эффективность использования энергоресурсов. Задачи специалиста в области безопасности жизнедеятельности сводятся к следующему; – контроль и поддержание допустимых условий (параметры микроклимата, освещение и др.) жизнедеятельности человека в техносфере; – идентификация ...
0 комментариев