2.3 Кариотип.
Кариотипом называется хромосомный комплекс вида со всеми его особенностями: числом хромосом, их формой, наличием видимых под световым микроскопом деталей строения отдельных хромосом. Иногда термин «кариотип» употребляют по отношению к хромосомному набору единичной клетки или группы тканевых клеток.
О некоторых элементах кариотипа – гомологах – уже упоминалось. Группируя их попарно, можно по микрофотографии профазных или метафазных хромосом, после специальной предфиксационной обработки клеток, построить идиограмму, т.е. расположить хромосомы в порядке уменьшения их длины. Еще недавно попарная группировка хромосом, особенно видов с 10 хромосомами и более, была затруднена вследствие их сходства по размерам и морфологии при равномерной окраске. В начале 70-х годов были разработаны методы дифференциальной окраски, которые позволили выявить в каждой хромосоме любого вида специфическое чередование различно окрашенных (светлых и темных) полос. В принципе, гомологичные хромосомы имеют одинаковую картину дифференциальной окрашиваемости. Специфичность поперечной исчерченности хромосом заключается в числе и размерах этих полос.
Среди методов выявления полос наиболее распространены С-метод и G-метод. В обоих случаях в качестве красителя используют реактив Гимза, а различия в расположении полос проявляются вследствие особенностей предфиксационной обработки.
В составе хромосом в виде темных полос С-метод позволяет выявить гетерохроматические районы, т.е. участки, которые в ядрах интерфазных клеток остаются компактными и под микроскопом выглядят как плотно окрашенные глыбки. Темные С-полосы располагаются чаще всего в прицентромерных участках хромосом, что указывает на внутрихромосомное распределение гетерохроматических районов.
Гетерохроматические районы в функциональном отношении слабоактивны. Различают конститутивный (истинный) и факультативный гетерохроматин. Первый имеет специфичную структуру и постоянно находится в идентичных участках гомологичных хромосом: в прицентромерных районах и возле уплотнений на концах плеч – так называемых теломеров, реже в других, характерных для каждой хромосомы местах. Второй появляется лишь в определенные периоды жизни клетки либо содержится в хромосомах клеток некоторых тканей. Факультативный гетерохроматин – это целые хромосомы или эухроматические районы хромосом, находящиеся в состоянии компактизации, подобно конструктивному гетерохроматину, и вследствие этого почти лишенные генетической активности. Из двух гомологичных хромосом такой хроматин, как правило, содержит лишь одна.
Неокрашенные С-методом участки хромосом (светлые полосы) соответствуют эухроматическим районам, составляющим у большинства видов 80-90% всего генетического материала клетки. В отличие от гетерохроматических эухроматические районы декомпактизуются в телофазе митоза.
Природа G-окрашенных полос пока не ясна, однако регулярность их расположения в хромосомах и их видоспецифичность дают основание полагать, что G-полосы отражают строго определенные черты хромосомной организации. Чем длиннее одни и те же хромосомы, например в профазе по сравнению с метафазой, тем больше полос можно идентифицировать методами дифференциального окрашивания. Это обстоятельство имеет значение для медицинской цитогенетики; с ним связана точность картирования малых хромосомных перестроек, обусловливающих некоторые наследственные болезни.
Как отмечалось ранее, каждая хромосома имеет центромеру, или первичную перетяжку, - место прикрепления нитей веретена. Иногда наблюдаются вторичные перетяжки, не связанные с функциями митотических движений хромосом. Первая перетяжка делит хромосомы на плечи. ЕЕ положение в середине, близко к середине или почти у концевых участков хромосомы, называемых теломерами, позволяет классифицировать хромосомы на метацентрические, субметацинтрические и акроцентрические соответственно. У некоторых хромосом во всех или в большинстве клеток бывают видны спутники – небольшие, как правило, специфические фрагменты тела хромосомы, соединенные с теломерами участком декомпактизованной ДНК – спутничной нитью.
Число хромосом видоспецифично. Хотя закономерности, характеризующие кариотип, иногда и отражают эволюцию определенных видов, в целом по структуре кариотипа прямо судить о систематическом положении вида нельзя.
У большинства высших животных и растений одна пара хромосом у особей одного из полов гетероморфна. Эти непохожие хромосомы называются половыми. В частности, у млекопитающих и у дрозофилы клетки мужских организмов имеют Х- и Y-хромосомы. У многих видов Y-хромосома отсутствует. Все остальные хромосомы называются аутосомами.
Таким образом, благодаря исследованиям цитологов в конце XIX – начале ХХ в. была обоснована роль ядра в наследственности, а наблюдения за поведением хромосом в митозе и мейозе привели к заключению, что именно с ними связана передача наследственных признаков.
3. СЕКРЕТЫ ГЕНЕТИЧЕСКОГО КОДА.
В организме каждого человека – своя наследственная конституция, характерная лишь для него. Именно с этим связана тканевая несовместимость, проявляющаяся, в частности, при пересадке органов и тканей от одного организма другому. «Чужая» кожа, например, со своими особенными молекулами вступает в нежелательные реакции с организмом «хозяина». Она вызывает появление белков – антител – и в результате не «приживается». Аналогичное явление наблюдается и при пересадке отдельных органов.
По-иному проходят эти процессы у однояйцевых близнецов, которые развиваются из двух клеток, образовавшихся из одной оплодотворенной яйцеклетки – зиготы. Такие близнецы всегда однополы и внешне поразительно похожи друг на друга. У однояйцевых близнецов пересадка тканей и органов вполне возможна, никакого отторжения их не происходит. Иначе и быть не может. Один и тот же комплекс всех наследственных факторов не провоцирует появления антител в их организмах.
Эти и многие другие факты показали, что программирование синтеза белков – главное свойство ДНК. Однако, прежде чем прийти к такому заключению, необходимо было доказать, что именно ДНК – носитель генетической информации. Первое подтверждение тому было получено при изучении явлений трансформации.
... при их слиянии зиготе хранится наследственная информация о физических, биохимических и физиологических свойствах, с которыми появляется новый человек. Материальной основой наследственности служат нуклеиновые кислоты, а именно ДНК. Но каким же образом генетическая информация передается от родителей к потомству? Как известно, новые клетки появляются в результате деления исходных материнских. Для ...
... принципов устройства генетического материала. И именно в этих предсказаниях он опередил современную ему науку почти на полстолетие. В его время ничего не было известно о материальных носителях наследственности, а Мендель описал, их свойства, подобно астрономам, предсказывавшим еще никем не виденные планеты. Мендель предположил, что раз существуют доминантность и рецессивность, проявляющиеся при ...
... , в котором следуют нуклеотиды. Могут потребоваться годы, прежде чем появятся осязаемые результаты в виде новых лекарств или вакцин. Груз наследственности Наследственные болезни... Еще совсем недавно они были, что называется, судьбой человека. Успехи медицинской генетики потеснили судьбу. Во многих случаях врачи могут теперь повлиять на такие заболевания. Анализ крови, исследование околоплодной ...
... нужны искусственные вещества, содержащие белки, необходимые для жизнедеятельности живых организмов. Благодаря важнейшим достижениям биотехнологии в настоящее время производится множество искусственных питательных веществ, по многим Свойствам превосходящих продукты естественного происхождения. Современная биотехнология позволяет превратить отходы древесины, соломы и другое растительное сырье в ...
0 комментариев