2.1 Общая структура микропроцессора
А Л У - арифметико-логическое устройство. Оно обеспечивает выполнение основных операций по обработке информации.
Любую задачу компьютер разбивает на отдельные логические
операции, производимые над двоичными числами, причем в одну
секунду осуществляются сотни тысяч или миллионы таких опера-
ций. Сложение, вычитание, умножение и деление - элементарные
операции, выполняемые АЛУ ЭВМ. Полный набор таких операций называют системой команд, а схемы их реализации составляют основу АЛУ. Помимо арифметического устройства АЛУ включает и логическое устройство, предназначенное для операций, при осуществлении которых отсутствует перенос из разряда в разряд. Иногда эти операции называют логическое И и логическое ИЛИ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. Время выполнения простейших операций определяется минимальным временем сложения двух операндов, находящихся в регистрах. В случае, если одно или оба слагаемых находятся не в регистрах, а в запоминающем устройстве (ЗУ), учитывается также время пересылки слагаемых в регистры и время записи полученной суммы в ЗУ. В большинстве современных микропроцессоров это время составляет от нескольких сотен наносекунд до нескольких микросекунд.
УУ - устройство управления, управляет процессом обработки и обеспечивает связь с внешними устройствами.
РЕГИСТРЫ - внутренние носители информации микропроцессора. Это внутренняя память процессора. Регистров - три. Один хранит команды или инструкции, два других - данные. В соответствии с командами процессор может производить сложение, вычитание или сопоставление содержимого регистров данных.
2.2 Характеристики микропроцессоров
Микропроцессоры отличаются друг от друга двумя характе-
ристиками: типом (моделью) и тактовой частотой.
Наиболее распространены модели Intel-8088,80286, 80386SX,
80386(DX), 80486(SX, SX2,DX, DX2, DX4 и т.д.), Pentium и Pentium Pro
они приведены в порядке возрастания производительности и цены.
Одинаковые модели микропроцессоров могут иметь разную тактовую
частоту - чем выше тактовая частота, тем выше производительность и
цена микропроцессора.
Тактовая частота указывает, сколько элементарных опера-
ций (тактов) микропроцессор выполняет в одну секунду. Тактовая
частота измеряется в мегагерцах(МГц). Следует заметить, что
разные модели микропроцессоров выполняют одни и те же операции
(например, сложение или умножение) за разное число тактов. Чем
выше модель микропроцессора, тем меньше тактов требуется для
выполнения одних и тех же операций. Поэтому микропроцессор
Intel-80386 работает в два раза быстрее Intel-80286 с такой же
частотой.
2.3 Сопроцессоры.
Специализация сопроцессоров состоит в быстрой обработке чисел с плавающей запятой. Они могут выполнять как обычные операции сложения, вычитания, умножения и деления, так и более
сложные операции, такие как вычисление тригонометрических
функций
Конструктивно заложенные в микропроцессор сигналы, позволяют передавать работу сопроцессору и затем получать результаты обработки. Чтобы использовать арифметический сопроцессор, находящийся в составе компьютера, необходимы программы, которые могут выдавать специальные коды, необходимые для запуска сопроцессора.
Микропроцессоры 8088, 80286, 80386 сконструированы так, что они позволяют использовать арифметические сопроцессоры 8087, 80287, 80387 фирмы "Intel"-соответственно. Более поздние модели микропроцессоров имеют встроенные сопроцессоры.
2.4. Наиболее важные параметры МП
Структуры различных типов МП могут существенно различаться, однако с точки зрения пользователя наиболее важными параметрами являются архитектура, адресное пространство памяти, разрядность шины данных, быстродействие.
Архитектуру МП определяет разрядность слова и внутренней шины данных МП. Первые МП основывались на 4-разрядной архитектуре. Первые ПЭВМ использовали МП с 8- разрядной архитектурой, а современные МП основаны на МП с 16 и 32- разрядной архитектурой.
Микропроцессоры с 4- и 8-разрядной архитектурой использовали последовательный принцип выполнения команд, при котором очередная операция начинается только после выполнения предыдущей. В некоторых МП с 16-разрядной архитектурой используются принципы параллельной работы, при которой одновременно с выполнением текущей команды производятся предварительная выборка и хранение последующих команд. В МП с 32-разрядной архитектурой используется конвейерный метод выполнения команд, при котором несколько внутренних устройств МП работают параллельно, производя одновременно обработку нескольких последовательных команд программы.
Адресное пространство памяти определяется разрядностью адресных регистров и адресной шины МП. В 8-разрядных МП адресные регистры обычно составляются из двух 8-разрядных регистров, образуя 16-разрядную шину, адресующую 68 Кбайт памяти. В 16-разрядные МП, как правило, используются 20-разрядные адресные регистры, адресующие 1 Мбайт памяти. В 32-разрядных МП используются 24- и 32-разрядные адресные регистры, адресующие от 16 Мбайт до 4 Гбайт памяти.
Для выборки команд и обмена данными с памятью МП имеют шину данных, разрядность которой, как правило, совпадает с разрядностью внутренней шины данных, определяемой архитектурой МП. Однако для упрощения связи с внешней аппаратурой внешняя шина данных может иметь разрядность меньшую, чем внутренняя шина и регистры данных. Например, некоторые МП с 16-разрядной архитектурой имеют 8-разрядную внешнюю шину данных. Они представляют собой специальные модификации обычных 16 разрядных МП и обладают практически той же вычислительной мощностью.
Одним из важных параметров МП является быстродействие, определяемое тактовой частотой его работы, которая обычно задается внешними синхросигналами. Для разных МП эта частота имеет пределы 0,4...233 МГц и более. Выполнение простейших команд (например, сложение двух операндов из регистров или пересылка операндов в регистрах МП) требует минимально двух периодов тактовых импульсов ( для выборки команды и её выполнения ). Более сложные команды требуют для выполнения до 10 - 20 периодов тактовых импульсов. Если операнды находятся не в регистрах, а в памяти, дополнительное время расходуется на выборки операндов в регистры и записи результата в память.
Скорость работы МП определяется не только тактовой частотой, но и набором его команд, их гибкостью, развитой системой прерываний.
... машину “Юнивак” - первый серийный компьютер с хронимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации. Направления развития и поколения ЭВМ. 1.Аналоговые вычислительные машины (АВМ). В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной ...
... ВУ различных типов, назначения и количества. Всю совокупность современных ВУ можно классифицировать по двум основным группам (Рис.3): внешняя память и устройства ввода/вывода, наиболее типичные представители которых могут быть охарактеризованы следующим образом. Внешние устройства (ВУ) ЭВМ - периферия Внешние устройства (ВУ) ЭВМ-периферия Внешняя память (ВП) Устройства ввода/ ...
... или источником информации. Маскирующий сигнал К, в общем случае является двухразрядным, ВА - сигнал разрешения выдачи адреса и ВД - сигнал разрешения выдачи данных. МК ОУ: F6...F4 F3...F0 K BA ВД 21. СТРУКТУРНАЯ СХЕМА И ПРИНЦИП ДЕЙСТВИЯ БЛОКА МИКРОПРОГРАММНОГО УПРАВЛЕНИЯ (БМУ) На входы K7...K0 БМУ подается код команды, который является адресом первой микрокоманды (МК) ...
... , региональных задач. 3).Средние ЭВМ – машины очень широкого распространения. 4).Малые ЭВМ. 5).ПЭВМ (персональные ЭВМ). 6).Микро ЭВМ и микропроцессоры. 7).Сети ЭВМ.Общие принципы построения современных ЭВМ. Основным принципом построения ЭВМ является программное управление, в основе которого лежит представление алгоритма решения любой задачи в виде программы вычислений. Алгоритм – это ...
0 комментариев