6. Волновое уравнение.
Когда мы рассматривали колебания, то для любой колебательной системы получали дифференциальное уравнение, для которого соответствующее уравнение колебаний являлось решением. Аналогично уравнение бегущей и отраженной волны являются решениями дифференциального уравнения второго порядка в частных производных, называемого волновым уравнением и имеющего вид:
,
где - фазовая скорость волны.
Уравнения бегущей и отраженной волн и волновое уравнение представлены для случая одного измерения, т.е. распространения волны вдоль оси ОУ. В волновое уравнение входят вторые частные производные по времени и координате от смещения потому, что есть функция двух переменных t и y.
7. Скорость и ускорение колеблющейся точки. Относительное смещение точек среды.
Если смещение любой точки среды с координатой y в момент времени t задано уравнением:
,
то скорость этой точки есть величина , а ускорение - :
,
§ 1.3. Энергия упругих волн.
В среде распространяется плоская упругая волна и переносит энергию, величина которой в объеме равна:
,
где - объемная плотность среды.
Если выбранный объем записать как , где S – площадь его поперечного сечения, а - его длина, то среднее количество энергии, переносимое волной за единицу времени через поперечное сечение S, называется потоком через его поверхность:
.
Количество энергии, переносимое волной за единицу времени через единицу площади поверхности, расположенной перпендикулярно направлению распространения волны, называется плотностью потока энергии волны.
Эта величина определяется соотношением:
,
где -объемная плотность энергии волны, - фазовая скорость волны. Так как фазовая скорость волны - вектор, направление которого совпадает с направлением распространения волны, то можно величине плотности потока энергии I придать смысл векторной величины:
.
Величина , вектор плотности энергии волны, впервые была введена Н.А. Умовым в 1984 году и получила название вектора Умова. Подобная величина для электромагнитных волн называется вектором Умова - Пойнтинга.
Интенсивностью волны называется модуль среднего значения вектора Умова .
Принцип суперпозиции (наложения) волн установлен на опыте. Он состоит в том, что в линейной среде волны от разных источников распространяются независимо, и накладываясь, не изменяют друг друга. Результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые частица получит, участвуя в каждом из слагаемых волновых процессов.
Согласно принципу суперпозиции накладываться друг на друга без взаимного искажения могут волны любой формы. В результате наложения волн результирующее колебание каждой частицы среды может происходить по любому сложному закону. Такое образование волн называется волновым пакетом. Скорость движения волнового пакета не совпадает со скоростью ни с одной из слагаемых волн. В этом случае говорят о скорости волнового пакета. Скорость перемещения максимума группы волн (волнового пакета) называется групповой скоростью. Она равна скорости переноса энергии волнового пакета.
На практике мы всегда имеем дело с группой волн, так как синусоидальных волн, бесконечных в пространстве и во времени, не существует. Любая ограниченная во времени и пространстве синусоидальная волна есть волновой пакет (его называют цуг волны). Групповая скорость такого пакета совпадает с фазовой скоростью бесконечных синусоидальных волн, результатом сложения которых он является.
В общем виде связь между групповой и фазовой скоростями имеет вид:
.
§ 1.5. Интерференция волн. Стоячие волны.1. Интерференцией волн называется явление наложение двух и более волн, при котором в зависимости от соотношения между фазами этих волн происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других.
В пространстве всегда найдутся такие точки, в которых разность фаз складываемых колебаний равна величине , где k – целое число, т.е. волны (от разных источников) приходят в такие точки в фазе. В них будет наблюдаться устойчивое, неизменно продолжающееся все время усиление колебаний частиц. Найдутся в пространстве, где распространяется несколько волн, и такие точки, где разность фаз будет равна , т.е. волны приходят в эти точки в противофазе. В таких точках пространства будет наблюдаться устойчивое ослабление колебаний частиц.
Устойчивая интерференционная картина возникает только при наложении таких волн, которые имеют одинаковую частоту, постоянную во времени разность фаз в каждой точке пространства. Волны, удовлетворяющие этим условиям и источники, создающие такие волны, называются когерентными. Плоские синусоидальные волны, частоты которых одинаковы, когерентны всегда.
2. Запишем условия максимумов и минимумов при интерференции. Когерентные точечные источники и испускают волны по всем направлениям. До точки наблюдения М расстояние от первого источника , а от второго - .
Колебания точки М под действием волн от двух источников и описываются уравнениями:
, .
Амплитуда результирующего колебания в точке М определится следующим образом (см. раздел «Сложение колебаний»):
.
Амплитуда колебаний точки М максимальна (), если
, где
Величина называется разностью хода двух волн.
Условие максимума при интерференции имеет вид:
.
Если целое число волн укладывается на разности хода двух волн, то при их сложении наблюдается интерференционный максимум.
Амплитуда колебаний точки М минимальна (), если
, ().
Условие минимума при интерференции имеет вид:
.
Если нечетное число полуволн укладывается на разности хода двух волн, то при их сложении наблюдается интерференционный минимум.
3. Простейший случай интерференции наблюдается при наложении бегущей и отраженной волн, что приводит к образованию стоячей волны. Уравнения бегущей и отраженной волны имеют вид:
,
Суммарное смещение частицы среды, находящейся на расстоянии y от источника колебаний, равно сумме смещений и :
.
Это и есть уравнение стоячей волны. Величина - амплитуда, а () - фаза стоячей волны. Можно сказать, что частицы в стоячей волне имеют одну фазу колебаний. Амплитуда колебаний частиц в стоячей волне зависит от их координат (расстояний до источника колебаний), но не зависит от времени. Знак модуля поставлен в формуле для амплитуды стоячей волны, потому что амплитуда – величина положительная.
В стоячей волне есть точки, которые все время остаются неподвижными. Такие точки называются узлами смещения, их положение определяется из условия:
, отсюда следует . Выполнение этого соотношения будет при условии для Итак, координаты узлов задаются формулой:
.
Расстояние между двумя соседними узлами равно .
Точки среды, колеблющиеся с наибольшей амплитудой, называются пучностями стоячей волны, их положение (координаты) определяются соотношением:
.
Это уравнение можно получить из условия максимума амплитуды
, т.е. . Последнее соотношение выполняется при значениях аргумента ().
Расстояние между двумя соседними пучностями равно .
... поступления 5 мая 1980 г.; // http://www.sciteclibrary.ru/- rus/catalog/pages/4797.html . Для подготовки данной работы были использованы материалы с сайта http://referat.ru О псевдоволнах электромагнитного поля В.В. Сидоренков МГТУ им. Н.Э. Баумана Общепринятая логика обсуждения вопроса о переносе энергии электромагнитного поля посредством волн такова, что проблемы здесь как бы и нет: всем все ...
... выше, это невозможно в принципе, поскольку, согласно уравнениям Максвелла (1), ЭМ волн с такими характеристиками в Природе нет. Итак, проблема с выяснением физического механизма переноса энергии волнами ЭМ поля объективно существует, и для ее разрешения требуется, по всей видимости, весьма нестандартный эвристический подход. Однако в наличии у нас имеется только система уравнений электродинамики ...
... и не возникает вихревое электрическое. «... по закону электромагнитной индукции переменное магнитное поле всегда порождает вихревое электрическое ...» Энциклопедия элементарной физики. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ. Таким образом, электрическая напряженность поля в виде вихревого электрического потока возникает не от движения магнита, а от изменения в пространстве магнитного потока, например, вокруг ...
... применяются не только в метровом, дециметровом и сантиметровом диапазоне волн, но и на длинных, средних и коротких волнах радиовещательного диапазона, а также во многих низкочастотных устройствах систем автоматики и телемеханики. 8. Расчет основных параметров коаксиального кабеля марки РК‑50–3–11 Каждому кабелю присвоено условное обозначение, которое включает буквы, обозначающие марку ...
0 комментариев