1.1.6. Исследование зависимости глубины проникновения от частоты излучаемого ультразвукового сигнала
Одним из основополагающих механизмов, ограничивающим область применения высокочастотной УЗ допплеровской аппаратуры, является быстрое (экспоненциальное) возрастание затухания ультразвука в тканях человеческого тела с ростом частоты колебаний.
Для повышения чувствительности и для увеличения глубины зондирования увеличивают интенсивность ультразвуковых колебаний. Однако это увеличение ограничено условиями безопасности обследования, т.к. при существенном повышении интенсивности ультразвука возможен нагрев и даже разрушение биологической структуры. По ГОСТу 26831-86, предел полностью безопасной дозы интенсивности при воздействии УЗ на человеческий организм составляет 50 мВт/см2.
С другой стороны, работа УЗ допплеровского прибора всецело обусловлена релеевским рассеянием, а одним из следствий механизма релеевского рассеяния, является четвертая степень зависимости энергии рассеянного сигнала от частоты излучаемого ультразвука. Т.е. красные кровяные тельца, являющиеся основными движущимися отражателями в исследуемом кровотоке, рассеивают УЗ высокой частоты лучше, чем УЗ низкой частоты. Этот эффект позволяет частично компенсировать повышенное затухание УЗ высокой частоты.
Совокупность двух указанных факторов приводит к тому, что существует оптимальное значение частоты, обеспечивающее максимальное соотношение сигнал/шум для каждого частного случая (т.е. коэффициента затухания и глубины залегания исследуемого сосуда). Данное значение можно получить математически. Как было отмечено, в случае релеевского рассеивания, интенсивность обратного рассеивания УЗ связана с частотой , на которой проводятся исследования, следующим соотношением:
где - коэффициент рассеивания. Ввиду затухания УЗ в ткани, его интенсивность уменьшается с глубиной по закону
где - интенсивность падающего УЗ, знак “-“ указывает на затухающий характер данной функции, коэффициент 2 определяет двойное расстояние (до сосуда и обратно), - коэффициент затухания, зависящий от типа ткани, - глубина исследуемого сосуда. Очевидно, что интенсивность отраженного от кровотока в исследуемом сосуде сигнала будет определяться произведением этих функций:
(1)
График этого выражения, представленного в виде функции , для нескольких глубин исследуемых сосудов изображен на рис. 1.19
Рис. 1.19. Зависимость интенсивности отраженного сигнала от частоты излучаемого УЗ
Как видно из графика, для каждой глубины расположения исследуемого сосуда существует определенная частота УЗ сигнала, при которой на приемник возвращается максимум излученной энергии. Эту частоту можно найти, продифференцировав (1) по , и приравняв полученное выражение нулю. Ненулевой корень последнего уравнения имеет вид:
(2)
Коэффициент a, может изменяться для мягких тканей от 0.2 дБ/МГц·см до более чем 2 дБ/МГц·см (в зависимости от вида ткани).
График на рис. 1.20 иллюстрирует зависимость расчетного диапазона частот как функции глубины зондирования мышечной ткани. Эта зависимость соответствует максимальному отношению сигнал/шум при регистрации УЗ‑сигналов, рассеянных на элементах крови. Заштрихованная область на графике соответствует различным величинам коэффициента затухания a.
Рис. 1.20 Оптимальная частота УЗ сигнала для исследования на заданной глубинеКак видно из данного графика, для существующих в настоящее время ультразвуковых допплеровских приборов, работающих на частотах до 20 МГц, предпочтительными являются глубины более 0,5 см. В то же время, оптимальной для высокочастотных приборов, с точки зрения соотношения сигнал/шум и получения максимальной мощности отраженного сигнала, является глубина расположения исследуемых сосудов, меньшая, чем 0,5 см.
1.1.7. Анализ структурных схем существующих ультразвуковых допплеровских приборов
Рассмотрим схемотехнику наиболее распространенных вариантов УЗ допплеровских приборов.
Непрерывно‑волновой ультразвуковой допплеровский прибор
со звуковой индикацией без выделения информации о направлении кровотока
Для построения допплеровских индикаторов скорости кровотока используются ряд известных радиотехнических узлов и блоков, применяющихся в коротковолновых приемо-передающих устройствах и доработанных с учетом специфики взаимодействия с электроакустическим элементом допплеровского прибора – ультразвуковым датчиком .
Блок схема простейшего непрерывно-волнового УЗ прибора со звуковой индикацией без выделения информации о направлении кровотока показана на рис. 1.21
Рис. 1.21 Блок схема непрерывно-волнового допплеровского прибора со звуковой индикацией без выделения информации о направлении кровотока
1 – УЗ датчик, 2 – УМ, 3 – предварительный усилитель, 4 – задающий генератор, 5 – синхронный детектор, 6 – кварцевый резонатор, 7 – полосовой фильтр, 8 – УНЧ,
9 – громкоговоритель.
Рассмотрим работу данного индикатора. Вырабатываемый задающим генератором 4 (частота которого стабилизируется кварцевым резонатором 6) сигнал подается на вход усилителя мощности (УМ) 2, усиливается последним и излучается в виде акустической волны, сфокусированной УЗ преобразователем 1 по направлению исследуемого сосуда. Отраженный сигнал, несущий информацию о движении форменных элементов крови в данном сосуде, преобразуется приемным элементом УЗ датчика, усиливается предварительным усилителем с малым уровнем шумов 3 и детектируется синхронным детектором 5, управляемым задающим генератором 4.
Эхосигнал содержит спектр доплеровских частот, обусловленный движением отдельных элементов кровотока в анализируемом объеме. Этот сигнал можно представить в виде суперпозиции сигналов, привносимых всеми линиями тока, проходящими через измерительный объем. Вклад каждой компоненты в этот сигнал пропорционален мощности ультразвука, рассеянной элементами кровотока вдоль данной линии, т.е. интегралу по линии тока от чувствительности в пучке (зависимости величины сигнала, принятого от точечного рассеивателя, от координат этого рассеивателя).
Для упрощения последующих выкладок, рассмотрим сигнал на выходе блока 3, как состоящий из трех компонентов: несущей частоты и сигналов, отраженных от прямого и обратного кровотоков. Такой сигнал может быть представлен в виде:
(3)
где , и - соответственно амплитуда, угловая частота и фаза каждого сигнала, а индексы 0, f и r обозначают несущую, прямой и обратный кровоток.
Этот сигнал поступает на детектор 5. С математической точки зрения детектор представляет собой перемножитель двух сигналов. Умножая данное выражение на - сигнал с выхода опорного генератора, получаем сигнал на выходе синхронного детектора 5:
(4)
Этот сигнал далее фильтруется полосовым фильтром 7 для устранения низкочастотных помех, возникающих вследствие отражения УЗ сигнала от медленно движущихся стенок сосуда (амплитуда сигнала от которых на несколько порядков выше амплитуды полезного допплеровского сигнала), постоянной составляющей и ВЧ шума (включая , и ).
Выражение для отфильтрованного сигнала имеет вид:
(5)
Данный сигнал подается затем на усилитель низкой частоты (УНЧ) 8 для воспроизведения посредством наушников (или громкоговорителей) 9.
Синхронное детектирование
Для ультразвукового допплеровского диагностического прибора принимаемый сигнал, несущий информацию о распределении кровотока в исследуемом сосуде, сравним с шумом. Амплитуда сигнала, отраженного от медленно движущихся стенок сосудов на несколько порядков превосходит полезный сигнал. Кроме этого, на входе приемного усилителя присутствует так называемый сигнал пролезания, т.е. сигнал, проникающий в приемный тракт посредством акустической и электрической связи, существующей между передающей и приемной частями прибора. Не последнюю роль в этом процессе играет и недостаточная экранировка ультразвукового датчика.
Исходя из вышеизложенного, а также из того, что принимаемый полезный сигнал промодулирован по частоте, вследствии выбранного принципа регистрации кровотока, излучаемым сигналом, синхронное детектирование является естественным способом выделения полезного сигнала.
Импульсный ультразвуковой допплеровский прибор со звуковой индикацией без выделения информации о направлении кровотока.
Блок‑схема импульсного УЗ допплеровского прибора со звуковой индикацией без выделения информации о направлении кровотока показана на рис. 1.22
Рис. 1.22 Блок-схема импульсного УЗ допплеровского прибора со звуковой индикацией без выделения информации о направлении кровотока
1 – УЗ датчик, 2 – УМ, 3 – предварительный усилитель, 4 - формирователь импульсов разрешения передачи, 5 – селектор передачи, 6 – селектор приема, 7 - формирователь импульсов разрешения приема (линия задержки), 8 - задающий генератор, 9 – синхронный детектор, 10 – УВХ, 11 – кварцевый резонатор, 12 – полосовой фильтр, 13 – УНЧ, 14 – громкоговоритель.
Как видно, импульсный прибор отличается от непрерывно-волнового наличием формирователя импульсов разрешения передачи и приема, а также селекторов передачи и приема, управляемых этими импульсами. Вырабатываемый опорным генератором 8 сигнал стробируется селектором передачи 5 в строго определенные промежутки времени, задаваемые формирователем импульсов разрешения передачи 4. Принятый сигнал также стробируется по времени селектором приема 6, а продетектированный синхронным детектором 9 сигнал запоминается в устройстве выборки и хранения (УВХ) 10 до прихода следующего импульса. Положение “объема выборки” на оси УЗ датчика или глубина расположения исследуемого сосуда определяется временной задержкой между импульсом излучения и стробом приема, открывающего селектор приема 6. Эта задержка задается формирователем импульсов разрешения приема 7.
Так как амплитуда принятого продетектированного сигнала определяется мощностью излученного ультразвука, а из-за импульсного характера излучения при одинаковой амплитуде излучаемых сигналов непрерывно-волнового и импульсного приборов средняя излучаемая мощность последнего будет меньше, то на УМ импульсного тракта подается большее напряжение питания, по сравнению с непрерывно-волновым режимом для обеспечения поддержания уровня средней интенсивности излучаемого сигнала в импульсном режиме. УЗ датчик импульсного прибора представляет собой один пьезоэлектрический элемент, совмещающий функции приема и передачи, разнесенные во времени. Приемный тракт должен обеспечивать защиту входного каскада от перегрузок во время излучения.
В целом, работа импульсного УЗ допплеровского прибора аналогична работе радиолокационной станции обнаружения движущихся целей. Практически весь математический аппарат и многие схемотехнические решения, наработанные в военной области, без каких-либо изменений могут быть использованы в медицине и наоборот. В этом заключается смысл так называемых двойных направлений, развитие которых имеет огромное научное и практическое значение.
Синхронный квадратурный детектор и блок выделения информации о направлении кровотока
Описанные выше приборы не сохраняют информацию о направлении кровотока, а дает лишь величину сдвига частоты. Информация о направлении необходима, чтобы следить за изменением скорости кровотока в течении кардиоцикла в тех сосудах, где возникает обратный кровоток, или если направление кровотока несет диагностическую информацию, например, при исследовании вен при недостаточности сердечных клапанов .
Для того, чтобы разделить сигналы, несущие информацию о прямом и обратном кровотоке, наиболее широко в современных приборах применяется квадратурная демодуляция (рис. 1.23.).
Рис. 1.23 Блок схема квадратурного демодулятора
Х – перемножители, ПФ – полосовые фильтры.
Усиленный сигнал с выхода предварительного усилителя 3 (рис 1.21, 1.22) подается на два перемножителя Х, выполняющих роль детекторов, на управляющий вход одного из которых подается сигнал с выхода опорного генератора , на управляющий вход другого – сигнал, сдвинутый относительно первого на , т.е. . Таким образом, на выходе одного из каналов присутствует синфазный сигнал , описываемый (5), на выходе второго – квадратурный сигнал , имеющий вид:
или (6)
Знак допплеровского сдвига, а значит, и направление кровотока определяется по соотношению фаз прямого (синфазного) и квадратурного каналов. Если этот сдвиг положителен, то квадратурный сигнал отстает на от синфазного, и опережает в противном случае.
Из выражений (5) и (6) следует, что для разделения сигналов необходимо “сдвинуть” один из каналов относительно другого на , а затем произвести суммарно-разностную операцию над полученными сигналами.
Из предложенных до сих пор методов разделения сигналов прямого и обратного кровотока наибольшее развитие получили 2 метода:
· обработка прямого и квадратурного канала в фазовой области;
· применение цифровой обработки сигналов и, в частности, фильтра Гильберта.
Первый метод поясняется на рис.1.1.7.2.3.
Рис. 1.24 Выделение сигналов прямого и обратного кровотока в фазовой области.
Оба сигнала, прямой и квадратурный, описываемые соответственно уравнениями (2.3) и (2.4), сдвигаются на и суммируются с другим, несдвинутым, сигналом. В результате получаются два полностью разделенных канала.
Так, сдвигая прямой сигнал , описываемый (5), получаем:
Суммирование с квадратурным сигналом приводит к удалению компонента, относящегося к обратному кровотоку:
Точно также, сдвигая квадратурный канал и суммируя с прямым каналом , получим компоненту обратного кровотока:
Второй подход основывается на применении фильтра Гильберта. ФГ представляет собой обычный, нерекурсивный фильтр. Именно из-за своего свойства сдвигать фазу на 90°, он применяется в модемах как детектор огибающей. Коэффициенты ФГ рассчитываются по формуле:
для , где - порядок ФГ, и для .
Так как ФГ реализуется в цифровом виде, обрабатываемый сигнал должен быть оцифрован посредством АЦП. В этом случае тракт обработки прямого и квадратурного канала имеет вид, показанный на рис. 1.25:
Рис.1.25 Выделение сигналов прямого и обратного кровотока в частотной области.
Здесь Z – линия задержки на половину длины ФГ. Таким образом, структурная схема непрерывно‑волнового УЗ допплеровского прибора
со звуковой индикацией и выделением информации о направлении кровотока выглядит как показано на рис. 1.26.
Отличие от ранее рассмотренной схемы – в блоках 5 и 7. Блок синхронного детектора 5 включает в себя схему формирования квадратурного сигнала, которая будет рассмотрена позднее и рассмотренную ранее схему квадратурного демодулятора рис. 1.24. Блок 7 содержит два полосовых фильтра и схему выделения информации о направлении кровотока – рис. 2.4. или 2.5., сигналы с выходов которых усиливаются посредством УНЧ и подаются на громкоговорители или головные телефоны 9.
Рис.1.26 Блок схема непрерывно-волнового допплеровского прибора с выделением информации о направлении скорости кровотока
1 – УЗ датчик, 2 – УМ, 3 – предварительный усилитель, 4 – задающий генератор, 5 – синхронный детектор и схема формирования квадратурных сигналов, 6 – кварцевый резонатор, 7 – полосовой фильтр и схема выделения сигналов прямого и обратного кровотока, 8 – УНЧ, 9 – громкоговорители.
Формирователь квадратурного сигнала.
Как было показано в п.1.1.6., для разделения каналов прямого и обратного кровотоков, необходимо сформировать два сигнала, сдвинутые один относительно другого на . На практике вместо того, чтобы умножать сигнал на и , этот сигнал умножают на сигнал прямоугольной формы (меандр) с частотой, кратной . Аналитическое представление такого сигнала []:
(7)
Как видно из приведенного выражения, синхронная демодуляция в этом случае сводится к синхронному детектированию посредством набора синхронных демодуляторов с коэффициентами усиления и несущими частотами . Входным избирательным усилителем, нивелирующим пролезание в низкочастотную область спектра выходного сигнала компонент с частотами является сам ультразвуковой датчик, работающий в области своего резонанса.
Таким образом, задача демодуляции входного сигнала сводится к задаче детектирования этого сигнала с помощью простейшего аналогового ключа, управляемого сигналам, имеющим форму меандра, и описываемого (7).
Эта задача наиболее просто решается в цифровом виде при помощи трех D триггеров (рис.1.27).
Рис. 1.27 Блок схема формирователя квадратурного сигнала.
Преимуществом данной схемы по сравнению с аналоговой является отсутствие дискретных компонентов и, как следствие, гораздо меньшие частотные, временные и температурные погрешности сдвига фаз.
Временная диаграмма для данной схемы приведена на рис. 1.28.
Рис. 1.28 Временная диаграмма работы формирователя квадратурного сигнала
Как видно из данной диаграммы, частота опорного сигнала должна быть выше частоты результирующих сигналов в четыре раза. Таким образом, для работы допплеровского прибора в диапазоне 2 МГц частота на выходе опорного генератора должна составлять 8 МГц, для 4 МГц – 16 МГц, и для 8 МГц – 32 МГц.
При построении приборов, работающих на частотах свыше 20 МГц, частота опорного генератора становится выше 80 МГц. При проектировании блоков генератора, формирователя квадратурного сигнала и смесителя, работающих на таких частотах, предъявляются повышенные требования к разводке печатной платы, ее экранировке, которые трудно обеспечить. Поэтому возникает отклонение разности фаз сигналов, подаваемых на квадратурный детектор от , что приводит к проникновению этого отклонения в выходной сигнал, и, как следствие, к искажениям результатов обработки допплеровского сигнала.
Так, если сигнал, подаваемый на детектор прямого канала, имеет вид , а сигнал, подаваемый на детектор квадратурного - , т.е. имеется ошибка сдвига опорного сигнала от величины , то в этом случае выражение для отфильтрованного квадратурного сигнала приобретает вид:
Как нетрудно заметить, полученное выражение легко преобразуется в следующее:
Т.е. квадратурный сигнал в этом случае содержит часть прямого сигнала. Это – случай так называемого "пролезания" или отсутствия разделения каналов. Сдвиг этого сигнала на аналоговым или цифровым способом и проведение над полученным результатом суммарно-разностной операции уже не приведет к полному разделению сигналов прямого и обратного кровотока, и результаты расчетов спектрограммы и индексов будут искажены.
На рис. 1.29 приведена смоделированная спектрограмма для случая . Для примера на рис. 1.30 приведена таже самая спектрограмма для .
Рис. 1.29 Спектрограмма сигнала при наличии отклонения сдвига фаз опорного сигнала квадратурного детектора от величины
Рис. 1.30 Спектрограмма сигнала при отсутствии отклонения сдвига фаз опорного сигнала квадратурного детектора от величины
Ультразвуковой спектроанализатор
Для количественной оценки параметров исследуемого кровотока применяются алгоритмы цифровой обработки сигналов (ЦОС) и, в частности, БПФ с последующим построением спектрограммы на экране монитора. Сигналы с выходов полосовых фильтров квадратурного детектора рис 1.23 дискретизируются посредством двухканального АЦП и подаются на вход блока ЦОС. Спектрограмма исследуемого кровотока представляет собой спектральную плотность мощности его компонентов. Эта плотность мощности вычисляется обычно с помощью метода периодограмм, т.е. взвешиванием непрерывного потока данных с помощью той или иной временной функции, вычисления БПФ (т.н. кратковременного БПФ), вычисления модуля комплексного результата БПФ и отображения полученного результата с помощью функции гамма коррекции.
По результатам полученной спектрограммы, а точнее, ее огибающей, рассчитываются так называемые индексы, являющиеся количественной оценкой исследуемого кровотока. Строго говоря, для вычисления индексов расчет и построение спектрограммы не обязательны, так как для получения огибающей вполне пригодны другие методы, не требующие таких вычислительных затрат, как БПФ. Необходимо отметить, что выделение огибающей может быть произведено в аналоговой форме. Такой подход характерен для некоторых портативных УЗ приборов, а также устаревших аппаратов, т.е. для тех приборов, где расчет БПФ либо затруднен, либо является излишним из-за отсутствия средства отображения спектрограммы. Такие приборы могут быть классифицированы как детекторы огибающей.
Алгоритмы ЦОС могут быть реализованы как аппаратно с применением цифровых процессоров обработки сигналов (ЦПОС), так и программным образом, благодаря достаточной для этих целей производительности современных процессоров персональных компьютеров.
Аппаратная реализация ЦОС оправдана там, где производительности универсального процессора не хватает на одновременную обработку принимаемых данных, расчет параметров и вывод информации на экран. Это характерно для дешевых или портативных специализированных решений УЗ допплеровской аппаратуры.
Например, для отображения на экране Nг = 400 линий по горизонтали для двух каналов за время Тэ = 2 с, максимально допустимое время вычисления одной спектральной составляющей равно Т1 = Тэ / (Nг * 2) = 2,5 мс. Учитывая, что для вычисления БПФ (без учета предшествующей фильтрации и последующих взятия модуля и другой обработки) необходимо выполнить [9] комплексных арифметических операций (типа умножения со сложением), где N - количество точек БПФ (обычно N = 256), максимально допустимое время на выполнение одной такой операции равно Т0 = Т1 / М = 1,25 мкс.
Широко представленные в настоящее время специализированные цифровые процессоры обработки сигналов специально разработаны для данной цели. По сравнению с микропроцессором 486DX2-66, производящего расчет 1024 точечного БПФ за 20 мс, ЦПОС ADSP2101 с циклом в 60 нс решает ту же задачу за 2,23 мс, т. е. на порядок быстрее.
Одно из возможных аппаратных решений допплеровского спектрального индикатора скорости кровотока представлено на рис. 1.31.
Рис. 1.31 Структурная схема аппаратной реализации допплеровского спектрального индикатора скорости кровотока.
Здесь РК - блок радиоканала, обеспечивающий запитку УЗ датчика, съем с него информации, усиление сигналов высокой и низкой частоты, выделение допплеровских сигналов и перенос последних с несущей частоты в низкочастотную область. ЦПОС – блок сигнального процессора, выполняющий квантование аналоговых доплеровских сигналов по времени, дискретизацию по амплитуде и вычисляющий спектральные составляющие посредством БПФ. ПК решает задачу отображения вычисленных спектральных составляющих на экране, рассчитывает численные параметры кровотока и документирует результаты измерения.
Блок ЦПОС обычно выполняется в виде платы расширения, установленной внутри ПК, т.е. обмен между ЦПОС и ПК происходит по внутренней шине ПК, что обеспечивает необходимую скорость пересылки данных для отображения спектра в реальном масштабе времени. Например, для шины ISA пересылка слова данных по шине с тактовой частотой Fт = 4,33 МГц занимает как минимум четыре цикла шины, а пересылка всей спектрограммы (два канала) - Т3 = (4 * N * Nг * 2) / Fт = 200 мс. Все остальное время Т4 = Тэ - Т3 = 90 % Тэ процессор IBM PC тратит на отображение спектрограммы и расчет параметров кровотока.
Пример структурной схемы такой платы показана на рис. 1.32.
Рис. 1.32 Структурная схема платы ЦПОС.
2. Специальная часть 2.1. Разработка функциональной схемы измерителяОсобенность УЗДП состоит в использовании в качестве зондирующего сигнала механических вибраций, передаваемых в тело человека. В процессе работы прибора производятся механические колебания элементов тканей на поверхности тела. Распространение ультразвука зависит от плотности, структуры, однородности, вязкости и сжимаемости тканей. Интегративным отражением этих свойств является акустический импеданс(АИ) ткани. АИ характеризует степень сопротивления среды распространению УЗ. АИ= d*c, где d – плотность среды (кг\м3), с – скорость распространения УЗ в среде. Циклическое движение элементов тканей на поверхности, производимое пьезоэлектрической пластиной, вызывает свою очередь, силовые воздействия на элементы тканей с более глубоких слоев, и, соответственно, их циклическое перемещение и т.д. Таким образом, за счет передачи силовых воздействий сжатия-растяжения между соседними элементами тканей возникает передача механических вибраций в тело человека, называемое УЗ волной.
В настоящее время в УЗДГ применяется УЗ с частотами до 20 МГц, Так, например, при УЗ обследований головы используют самые низкие частоты порядка 0.5 - 2 МГц, при обследовании периферических сосудов - до 10 МГц, в офтальмологии - до 15 МГц. А чем выше частота, тем ниже минимальная регистрируемая скорость, поэтому ,применяемые в настоящее время УЗДП, имеют ограничения на минимальную регистрируемую скорость.
Указанное ограничение возникает по двум причинам:
* из-за зависимости доплеровского сдвига от частоты излучения;
* из-за необходимости фильтрации принимаемого сигнала.
Допплеровский сдвиг (разность частот излучаемого и принимаемого сигнала) прямо пропорционален частоте УЗ сигнала, на которой проводится исследование кровотока - т.е. чем ниже частота УЗ, тем меньше допплеровский сдвиг, получаемый при обследовании одного и того же кровотока на различных частотах.
Так, среднее значение минимальной регистрируемой скорости для УЗДП, работающего на частоте 8 МГц, составляет 2 см/с, что, но меньшей мере, вдвое больше величины, характерной для кровотока в малых венах, и более чем на порядок превышает скорость кровотока в капиллярах (табл.1).
Таблица 1. Средняя скорость движения крови в различных сосудах.
Сосуд | Средняя скорость течения в см/с |
Аорта | 30-60 |
Большие артерии | 20-40 |
Вены | 10-20 |
Малые артерии, артериолы | 1-10 |
Венулы, малые вены | 0.1-1 |
Капилляры | 0.05-0.07 |
Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами:
сложностью получения приемлемых параметров УЗ преобразователя, выполненного на основе пьезокерамики, для работы на частотах свыше 10 МГц. Толщина пьезокерамической пластины, используемой в качестве активного элемента, составляет половину длины волны, и на частотах свыше 10 МГц становится меньше 0.2 мм. Из-за существования пор в объеме керамики, напыляемые на противоположные поверхности пьезокерамической пластины электрические контакты образуют электрические соединения друг с другом через эти поры, и такой преобразователь становится непригодным для работы;
существующие в настоящее время схемы построения блоков обработки сигналов УЗ преобразователей (в диапазоне до 16 МГц) предполагают производить эту обработку непосредственно в ВЧ области, что приводит к усложнению схемы, ужесточению требований к параметрам ЭРЭ и, как следствие, к заметному удорожанию всего допплеровского комплекса.
Упрощенная блок схема непрерывно-волнового НЧ УЗ индикатора показана на рисунке 2.1.
рис 2.1 Блок схема непрерывно-волнового допплеровского индикатора скорости кровотока
где 1 - Малошумящий усилитель 2 - НЧ фильтр 3 - Фазовый детектор 4 - Генератор 2 МГц 5 - Усилитель 6 - АЦП
Рассмотрим работу данной схемы:
Вырабатываемый задающим генератором 4 сигнал подается на вход излучающего преобразователя и излучается в виде акустической волны, сфокусированной по направлению исследуемого сосуда. Отраженный сигнал, несущий информацию о движении форменных элементов крови в данном сосуде, преобразуется приемным элементом УЗ датчика, расположенным вокруг излучающего, усиливается усилителем с малым уровнем шумов 1 и детектируется фазовым детектором 3, управляемым задающим генератором 4. Отражение УЗ происходит на границе раздела сред с различными АИ, причем величина отражения УЗ прямо пропорциональна разности АИ сред. Генератор устройства собран на транзисторе VT1. Рабочая точка генератора определяется сопротивлением резисторов R8C4. Максимально достигаемая с помощью генератора мощность ограничена величиной тока высокой частоты (2 МГц), проходящей через кварц. Слишком большой ток высокой частоты нагревает кристалл, что отрицательно сказывается на стабилизации частоты. Поэтому генератор рассчитан на небольшую мощность (порядка 8мВт), но при высокой стабильности колебаний. Требуемую мощность получают в следующем каскаде, собранном на транзисторе VT2, по схеме с разделенной нагрузкой. Рабочая точка каскада определяется соотношением резисторов R10R11. В цепь эмиттера включен излучающий пьезоэлемент. В цепь коллектора параллельный колебательный контур, настроенный на частоту генератора (2 МГц) с которого опорный сигнал поступает на фазовый детектор.
Усиленный малошумящим усилителем 1 сигнал далее фильтруется полосовым фильтром 2 для устранения низкочастотных помех, возникающих вследствие отражения УЗ сигнала от медленно движущихся стенок сосуда (амплитуда сигнала от которых на несколько порядков выше амплитуды полезного допплеровского сигнала) и высокочастотного шума и подается затем на усилитель 5 и далее на АЦП.
Необходимость низкочастотной фильтрации вызвана наличием мощных низкочастотных составляющих в спектре принимаемого УЗ сигнала, обусловленным различными артефактами (колебаниями стенок сосудов, так называемым "пролезанием" сигнала с выхода передатчика на вход приемника, что особенно характерно дня прибора, работающего в непрерывном режиме).
Схема фазового детектора детектирует разность фаз двух сигналов, так что при наличии разности фаз могут быть приняты определенные меры по корректированию. Фазовый детектор часто называют также фазовым дискриминатором или частотным компаратором. Схема фазового детектора близка к схеме дискриминатора(демодулятора) ЧМ-сигналов, а их основные рабочие характеристики практически идентичны.
Подлежащий анализу сигнал прикладывается к входной обмотке L4 и трансформируется во вторичную обмотку L5. Вторичная обмотка шунтируется конденсатором переменной емкости С1, благодаря чему образуется параллельный резонансный контур, настроенный на частоту контрольного (опорного) сигнала, который прикладывается к первичной обмотке L2 трансформатора и наводится на L3.
Если оба сигнала имеют идентичные частоты, то при хорошей балансировке системы, прикладываемые к диодам сигналы одинаковы. Каждый диод проводит через полупериод, вследствие чего через диоды протекают пульсирующие токи. Однако пульсации напряжения на резисторах R13 и R14 сводятся к минимуму благодаря фильтрующему действию конденсаторов С7 и С2, так что через R13 и R14 протекают практически постоянные токи. Вследствие использования центрального отвода в обмотке L5 и равенства резисторов R13 и R14 падения напряжений на этих выходных резисторах равны и противоположны по знаку; поэтому при равенстве частот сигналов выходное напряжение равно нулю.
Индуктивность L3 не связана с L4, т.е. она является вторичной обмоткой трансформатора L3L2.
Поскольку катушка L3 связана с входом и выходом системы, каждый диод подвержен воздействию двух сигналов: опорного и входного. Однако общее напряжение на каждом диоде является не арифметической, а векторной суммой напряжений сигналов. Это объясняется тем, что падение напряжения EL5 на нижней половине вторичной обмотки, отсчитываемое от средней точки этой обмотки, опережает на 900 ток Iк , протекающий через эту часть обмотки, по этой же причине падение напряжения ЕL5 на верхней половине вторичной обмотки, также отсчитываемое от средней точки этой обмотки, должно отставать от вектора Ik на 900;
Если входной сигнал на L4 отличается от опорного сигнала на L2, то фазовые соотношения сигналов в рассматриваемом компараторе изменяются, в результате чего один из диодов проводит лучше другого. Поэтому падение напряжения на одном из выходных резисторов становится больше падения напряжения на другом резисторе и их суммарное падение напряжения перестает быть равным нулю, причем его величина и полярность зависят от разности этих падений напряжений.
При изменении частоты входного сигнала колебательный контур L5C1 выходит из резонанса и ток Ik во вторичной обмотке не изменяется в фазе с э.д.с. Eинд. Это объясняется тем, что колебательный контур на частоте выше или ниже резонанса имеет индуктивное или емкостное сопротивление. Но между Ik и ЕL5 сохраняется разность фаз, равная 900. В результате этого напряжение на диоде VD1 увеличивается а на диоде уменьшается. В этом случае диоды проводят неодинаково, и на выходе компаратора появляется напряжение.
Изменение частоты входного сигнала в другом направлении приводит к увеличению ЕVD2 и уменьшению ЕVD1. Появляется выходное напряжение, полярность которого противоположна полярности напряжения, образующегося в предыдущем случае.
Однако перед подачей принятого сигнала на детектор, его необходимо усилить т.к. сигнал очень слаб. Для этого используется малошумящий усилитель с малым дрейфом.
С выхода фазового детектора сигнал, через усилитель на микросхеме К224ПП1, поступает на АЦП. С АЦП оцифрованный сигнал с помощью интерфейса RS-232C поступает на блок ЦПОС.
При относительно медленной передаче сигналов (порядка сотен битов в секунду) наиболее подходящим является стандарт RS-232C. Этот стандарт определяет уровни сигналов обеих полярностей, а величины гистерезиса и времени запаздывания обычно задаются входными формирователями (для выходного формирователя нужны источники питания отрицательной и положительной полярностей, а для входного преобразователя это не обязательно). Типовая структура приведена на рисунке 2.1.2.
... в корпусе датчика (9). С задней стороны корпуса прикручивается крышка (10) с разъемом (11) SKINTOP MS, через который проходит сигнальный кабель (12) для соединения датчика с прибором для измерения скорости кровотока. Для уменьшения потери энергии ультразвукового колебания при излучении в исследуемую среду используется промежуточная среда, заполненная акустически прозрачной жидкостью (13), в ...
... присоединения инфекционных осложнений.”[ http://www.sgu.ru/faculties/fnbmt/departments/kmbmi/chair.htm] Эти особенности обусловили развитие косвенных (бескровных) методов измерения давления. Косвенные (неинвазивные) методы измерения кровяного давления В настоящее время известно несколько групп методов косвенной регистрации кровяного давления. В зависимости от принципа, положенного в основу ...
0 комментариев