2. Непрерывная модель для гладкой функции яркости
Пусть - оценка истинной функции яркости, которая подвержена сглаживающему преобразованию оптической системы. Поскольку ошибки при получении оценки , как правило, носят интервальный характер, можно с достаточной уверенностью считать, что:
| - | ?.
Здесь? - область определения функции . Приведенное условие, что значения функции и могут отличаться друг от друга не более, чем на значение порога ?.
Далее степень гладкости функции в точке можно оценить по величине квадрата модуля градиента:
.
С учетом этого можно ввести в рассмотрение следующий функционал по критерию гладкости:
.
3. Дискретная модель для выбора наиболее гладкой функции яркости
Будем считать, что значения функции известны только в целочисленных точках , = , =. Тогда необходимо найти значения наиболее «гладкой» функции в узлах сетки , которая удовлетворяет условию:
|- | ?, =1,2,...,N1, =1,2,...,. (1)
Нетрудно получить дискретный аналог () функционала гладкости , если аппроксимировать квадрат модуля градиента конечными разностями:
|-, |? -,
|.
Заменяя интегрирование конечной суммой, получаем:
. (2)
Далее необходимо решить задачу на условный экстремум - минимизировать функционал при условии (1). Это можно сделать методом сопряженных градиентов.
Минимизация функционала с помощью метода сопряженных градиентов
Нетрудно заметить, что функционал можно рассматривать как векторную функцию от аргумента . Поэтому, учитывая условие (1), функционал необходимо минимизировать в области
.
Рассмотрим практическую реализацию метода сопряженных градиентов.
В качестве начального приближения выбирается исходное черно-белое изображение, т.е. =.
Пусть на шаге мы имеем сглаженное изображение . Тогда направление минимизации в методе сопряжения градиентов следует выбрать из условия:
+ . (3)
Таким образом, направление минимизации зависит от предыдущего направления минимизации . Мы считаем, что =0. При вычислении направления следует учитывать, что точка может лежать на границе области , т.е. для некоторых значений и будет выполняться равенство
= ? (знак «+» или «-»).
Тогда координату вектора следует обнулить, если минимизация вдоль этого направления в любом случае приводит к перемещению точки за пределы области допустимых значений ? .
При программной реализации положение точки удобно закодировать:
Тогда координату следует обнулить, если выполняется условие:
> 0.
После того, как вычислено направление минимизации , функционал минимизируется вдоль данного направления. Для этого необходимо решить оптимизационную задачу
относительно параметра. Учитывая, что - это полином второй степени от многих переменных (положительно определенная квадратичная форма), раскрывая скобки и приводя подобные, получим многочлен второй степени относительно?:
.
Нетрудно заметить, что последняя оптимизационная задача имеет явное решение:
= -.
Из логики предлагаемого метода следует, что значение должно быть положительным. Сглаженное изображение на следующем итерационном шаге определяем по формуле:
. (4)
Однако непосредственно формулу (4) использовать нельзя, поскольку точка может попасть за пределы области допустимых значений. С учетом этого следует корректировать координаты вектора по формуле:
Сходимость данного алгоритма следует оценивать по модулю градиента , при этом модуль следует рассчитывать только по тем координатам, которые не находятся на границе области (в этом случае ). Аналогично рассчитывается модуль градиента и в формуле (3).
5. Выделение контуров и характерных точек изображения будем называть характерными те точки изображения, которые являются наиболее информативными, т.е. по которым можно восстановить с некоторой точностью исходное изображение. Нетрудно заметить, что предлагаемый метод сглаживания позволяет выделить характерные точки. Это точки с координатами , которые являются граничными в том смысле, что. Данные точки должны определять согласно решению оптимизационной задачи положение всех нехарактерных точек.
Нетрудно заметить, что граничными точками будут также точки, определяющие контуры края изображения. В этих точках является большим значение модуля градиента, поэтому в окрестности этих точек не удастся сгладить изображение и значения яркости в этих точках сглаженного изображения окажутся на границе допустимых значений.
Предлагаемая процедура сглаживания позволяет улучшить качественные характеристики методов предварительной обработки изображений, использующих градиент изображения. Отметим в заключение, что предлагаемый метод сглаживания особенно эффективно фильтрует ошибки, возникающие при оцифровке реальных изображений.
Список литературы
Lee D. Coping with discontinuities in Computer Vision: Their Detection, Classification and Measurement// IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, № 4, 1990.
Дуда Р.,. Харт П. Распознавание образов и анализ сцен. - М. : Мир, 1976.
Павлидис Т. Алгоритмы машинной графики и обработки изображений. - М.: Радио и связь, 1986.
... о биологической причинности. Ряд феноменов, которые витализм считал специфическими для биологических объектов (способность к саморегуляции, усложнение строения, достижение одного результата разными способами) рассматриваются в современном естествознании как типичные проявления процессов самоорганизации любых достаточно сложных систем, а не только живых. Н.Бор: “ни один результат биологического ...
... безопасности, привлекаются к административной ответственности, если по действующему законодательству допущенные нарушения не влекут за собой более строго наказания. Анализ I части отчета по преддипломной практике Ночной клуб «Барин» - предприятие общественного питания с широким ассортиментом блюд сложного приготовления, включая заказные и фирменные; вино-водочные, табачные и ...
... переменную. Положительные коэффициенты говорят об усилении стока под влиянием данного фактора, отрицательные – об ослаблении [19]. ГЛАВА 3. Основные особенности регионального климата Рязанской области и его динамики 3.1 Среднемноголетние и экстремальные значения метеорологических величин Рассмотрим данные характеристики на примере метеостанции Елатьма, измерения которой охватывают период ...
... , где мы полностью контролируем все инструменты исследования, в особенности язык, в примитивное общество, где практически невозможно контролировать условия сбора данных и надо освоить новый язык, мы в какой-то мере по необходимости жертвуем методологической строгостью. Но можно быть уверенным, что все эти недостатки методологии исследования с лихвой окупятся теми преимуществами, которые даст нам ...
0 комментариев