6.3. Приоритеты развития науки и научного комплекса в России

При формировании целей развития научного комплекса страны важно помнить, что наука как социальный инструмент, по крайней мере, две составляющие с точки зрения ее взаимоотношений с обществом.

Первая относится, прежде всего, к фундаментальной науке и отражает естественный ход ее развития, определяемы накопленным научным знанием, творческим потенциалом ученых и, частично, воздействием улавливаемого этими учеными социального заказа. Научные знания имеют всеобщий характер и коллективы ученых, порождающие эти знания, входят в мировое научное сообщество, являются достоянием общечеловеческой цивилизации и развиваются, ориентируясь на решение проблем глобального развития человечества.

Вторая составляющая относится к прикладной науке, которая ориентирована на решение социальных и экономических задач страны и может энергично и результативно развиваться при наличии достаточно отчетливо сформулированного и оплаченного обществом социального заказа на результаты научно-технической деятельности. Это сфера практически прямого воздействия на масштабы и качество ожидаемых научных и технологических результатов со стороны органов управления обществом и государством. Социальная и экономическая эффективность деятельности второй составляющей существенно зависит от трудовой этики населения.

Особую тревогу вызывает фактический распад прикладной науки и устойчивое снижение научно-технологического потенциала страны. Это означает, что экономика страны лишается ее постоянно обновляющей основы, а смена технологии в ближайшем будущем будет зависеть даже не столько от продажи России лицензий на новые технологии, сколько от прямых поставок устаревшего импортного оборудования и технологии. Все это только увеличит отставание России от ведущих стран мира, поскольку в этих условиях Россия не сможет ни предлагать мировому сообществу новую технику, ни самостоятельно осваивать новейшие технологии ведущих стран мира. При оценке значимости первой составляющей необходимо исходить из следующего: заставлять фундаментальную науку адаптироваться только экономическими методами в кризисной ситуации неэкономно и бесперспективно. Мировой опыт показал, что именно научный комплекс совместно со сферой образования и управления технологиями является локомотивом энергичного движения к наукоемким и образовательным экономикам, за которыми будущее. Необходимость движения именно в этом направлении задают общецивилизационные процессы глобализации и информатизации всех сфер хозяйственной жизни человечества. Иначе остается лишь перспектива технологической отсталости и энергичное смещение на периферию цивилизации.

России уже сейчас нужно перспективная модель будущей науки, способной обеспечить стратегические интересы жизнедеятельности населения. Эти стратегические интересы должны быть политически осознаны и оформлены как социальный заказ научному комплексу.

Чтобы разработать целевые ориентиры, кроме самоопределения научного сообщества, нужна технология формирования и проведения в жизнь долговременных целевых установок общества, подкрепленная соответствующими институтами и законами. Такие страны как Япония, Франция, США имеют технологии формирования национальных приоритетов и поддерживающие их институты.

Российская академия наук накопила немалый опыт разработки сложных наукоемких проблем, в том числе опыт долгосрочного прогнозирования социально-экономических процессов. Миннауки России и РАН совместно с ГНЦ могли бы взять на себя инициативу подготовки Комплексной программы развития российской науки, технологий и производства.

Чрезвычайно актуально ввести в действие технологию принятия решений по вопросам социального, экономического и научно-технического развития, вовлечь в подготовку важнейших государственных решений высококвалифицированных ученых и специалистов научного комплекса, повысить результативность действий органов государственной власти и сэкономить огромные средства за счет системного согласования решений, без чего невозможно устойчивое сбалансированное развитие жизнедеятельности страны.

7. СТАНОВЛЕНИЕ ИНТЕНСИВНОЙ ТЕХНОЛОГИИ РАЗРАБОТКИ НОВШЕСТВ

Мощным средством интенсификации любых разработок стало в последние десятилетия электронно-вычислительная техника. Первым ее вкладом в интенсивную технологию инновационного процесса на предприятии стала автоматизация информационного обеспечения. Со­здание информационно-справочных и информационно-поисковых сис­тем, банков данных, баз знании и т.п. позволили резко увеличить полноту охвата имеющейся информации, целенаправленность ее по­иска и использования.

В современных условиях интенсивного производства новых зна­ний процессы создания новых технических систем характеризуются возрастающей сложностью задач конструирования: растет число аль­тернатив выполнения отдельных подсистем, узлов, блоков, увеличива­ется список физических процессов, которые закладываются в основу их производства. С ростом числа альтернатив увеличивается и число осу­ществляемых и работоспособных комбинаций этих альтернатив. Все это ведет к необходимости адекватного информационного обеспечения про­ектных и конструкторских работ, невозможного, в наше время все воз­растающего потока информации, без помощи ЭВМ.

Академик В.Н.Глушков отмечал, что "аспекты применения ЭВМ в изобретательстве практически бесчисленны" и следующим ша­гом в этом плане стало использование возможностей электронно-вычис­лительной техники не только в поиске оптимальных физических принципов действия (ФПД) будущих конструкций или технологий и технических решений (ТР), но и в открытии новых и более эффектив­ных ФПД и ТР.

Например, один из разработанных в нашей стране методов ав­томатизированного синтеза технических решений позволяет получать путем комбинирования эле­ментов и признаков известных технических решений новые, еще неиз­вестные ТР, обеспечивает в большой мере автоматическую оценку и сравнение вариантов ТР, автоматизирует описание синтезированных (выбранных) ТР на естественном языке или в виде графического эскиза.

В последнее время все большее значение приобретает человеко-машинные экспертные системы, позволяющие соединить опыт, знания и интуицию людей с возможностями электронно-вычислительной тех­ники. Особенно перспективно применение таких систем в инновацион­ном процессе, как правило, характеризующимся значительной неопределенностью сроков, необходимых ресурсов, ожидаемых резуль­татов.

По мнению российских специалистов, в первую очередь нужны экспертные системы для отработки разрабатываемых объектов на испы­тательных стендах. Так, анализ инновационного процесса разработки ряда видов двигателей показал, что они создавались в течение 6-7 лет. Но при этом затраты времени и средств на отработку изделия составля­ли более 80 процентов общих затрат на проект, а полезное время самого процесса испытаний — всего 5-12 процентов.

Такой низкий КПД объясняется, с одной стороны, тем, что в связи со сложностью математического описания взаимосвязи физиче­ских процессов, происходящих в разрабатываемых объектах, ошибки в проектах сложных систем неизбежны; с другой — при проектировании не принято предусматривать возможность возникновения сбоев, ибо изначально предполагается, что объект будет удовлетворять всем уста­новленным в задании требованиям.

Необходимо, однако, заметить, что не в ходе собственно проекти­рования, а лишь в процессе продолжительной экспериментальной обра­ботки и натурных испытаний можно обеспечить высокую надежность и качество создаваемых изделий. Экономия на разработке программы и системы испытаний приводит к тому, что теряется неизмеримо больше времени и средств на выяснение причин непредвиденных отказов и их устранение. Практика показывает, что на это уходит порой 90 процен­тов времени экспериментальной отладки новых изделий.

Использование экспертной системы, в которой параллельно с проектированием объекта готовится и оптимизируется программа его испытаний, позволяет еще на начальных стадиях проекта выявить сла­бые места в конструкции, которые могут быть исправлены до начала эксплуатации машин. С помощью этих систем в современной технике полнее учитывается ее взаимодействие с пользователями и внешней средой, осуществляется контроль и диагностика, без которых сложные машины считаются сегодня неконкурентоспособными.

Огромные возможности экспертных систем лучше всего раскры­ваются в их сочетании с другими функциональными блоками и разра­ботанными пакетами прикладных программ систем автоматизированного проектирования.

В США, например, уже есть новые средства программного обес­печения ЭВМ, позволяющие резко ускорить и повысить точность пред­варительных расчетов себестоимости готовящейся и выпускаемой продукт». Так, программы корпорация "Кодак" позволяют сократить на 75 процентов время составления сметы расходов по выпуску продук­ции. Как свидетельствует опыт отдельных компаний, при умелом ис­пользовании данных программ отклонения предварительных результатов от фактических показателей себестоимости не превышают 10 процентов. Специализированные системы автоматического проекти­рования (САПР), предназначенные исключительно для расчетов смет, способны оперировать большими базами, включающими данные о более чем 250 видах конструкционных материалов и 60 типах технологиче­ского оборудования.

С помощью некоторых моделей подобных комплексных систем оптимизируется выбор новых технологий, рассчитывается время выпу­ска партия изделий, определяется себестоимость партии я затраты вре­мени на проверку качества выпускаемой продукции. Внедряются в практику и принципиально новые подходы к построению подобных программ, ориентированных на стадии конструкторско-технологической разработки изделия. Этими программами оснащаются экспертные системы, предназначенные для конструкторов и технологов.

Основной принцип, в соответствии с которым формируется база таких систем, состоит в том, что от 50 до 80 процентов будущей себесто­имости могут быть точно определены на этапе конструкторско-технологической разработки. Обычно эти программы вводятся на автоматизированные рабочие места (АРМ) конструкторов и техноло­гов, что значительно повышает эффективность их использования. Бла­годаря этому, в частности, появляется возможность анализа многих вариантов себестоимости. Наиболее опытным специалистам удается рассчитывать с помощью новых программ ожидаемую себестоимость будущего изделия с точность до 5% за полчаса.

Экспертные системы хорошо зарекомендовали себя при реше­нии ряда задач автоматизированного проектирования, производства интегральных схем, управления технологическими процессами и т.п.

 Так, благодаря вводу экспертной системы в процесс проектиро­вания больших интегральных схем удалось оптимизировать их разра­ботку, проводить ее гораздо быстрее и качественнее. Одна из таких систем американской фирмы "Белл" помогает проектантам получить описание микросхемы, координировать переход от одного этапа к дру­гому, автоматически составлять необходимую документацию и т.п.

Фирма ДЕК использует экспертные системы при разработке состава и конфигурации выпускаемых компьютеров, что позволяет ей создать машины с оптимальными характеристиками, отвечающим и всем требованиям заказчиков.

На основе заранее установленных правил применяемая фирмой система определяет, какие замены или дополнения надо внести в исход­ную конфигурацию ЭВМ, чтобы обеспечить поставку машины, соответствующей нуждам заказчика и имеющей при этом минимальную себестоимость.

При помощи этой экспертной системы фирма ДЕК определила конфигурацию более чем 90 тыс. машин и в 98 процентах случаев никаких проблем не возникало. Производительность системы в шесть раз выше по сравнению с работой "вручную". В то же время 2 процента заказов, которые оказались не под силу экспертной системе, заключает в себе наиболее интересные и сложные новые задачи, решение которых требует максимальных усилий и высокой квалификации.

Таким образом, экспертные системы не только являются сред­ством интенсификации технологии инновационного процесса, но и спо­собны играть роль "ищеек", выискивающих неизвестные инновационные направления.


ЗАКЛЮЧЕНИЕ

Особенностью современного этапа развития инновационной деятельности является образование в крупнейших фирмах единых научно-технический комплексов, объединяющих в единый процесс исследование и производство. Это предполагает наличие тесной связи всех этапов цикла «наука -производство". Создание целостных научно-производственно-сбытовых систем объективно закономерно, обусловлено научно-техническим прогрессом и потребностями рыночной ориентации фирмы.

В 80-е годы в инновационной политике крупных фирм отчетливо проявилась тенденция к переориентации направленности научно-технической и производственно-сбытовой деятельности. Она выражалась прежде всего в стремлении к повышению в ассортименте выпускаемой продукции удельного веса новых наукоемких изделий, сбыт которых ведет к расширению сопутствующих технических услуг: инжиниринговых, лизинговых, консультационных и др. С другой стороны, отмечается стремление к снижению издержек производства традиционной продукции.

Особенно заметно эти тенденции проявляются в инновационном менеджменте у американских машиностроительных ТНК, которые концентрируют свои усилия на разработке и производстве продукции высокой технической сложности (радиоэлектронная техника, особенно ЭВМ и микропроцессоры, авиакосмическая техника, энергетическое оборудование, средства автоматизации и др.). Они стремятся за счет монополизации выпуска таких изделий обеспечить быструю амортизацию капитала и сохранить лидерство в определенных секторах рынка машин и оборудования. Одновременно они стремятся к значительному снижению издержек производства в традиционных отраслях машиностроения в целях повышения их конкурентоспособности.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.   Ильенкова С.Д. Инновационный менеджмент. М.:- Банки и биржи, 1997.

2.   Фатхутдинов Р.А. Инновационных менеджмент = Innovatory management: учебник для студентов вузов по специальности и направлению “менеджмент”. – М.:- Бизнес-школа «Интел-Синтез», 1998

3.   Котлер Ф. Основы маркетинга. М.: - Ростинтэр, 1996

4.   Уотермен Р. Фактор обновления. Как сохраняют конкурентоспособность лучшие компании. М.:- Прогресс, 1988

5.   Скамай Л. Риски в инновационном предпринимательстве. // РИСК. №5-6, 1998

6.   Донцова Л.В. Инновационная деятельность: состояние, необходимость государственной поддержки, налоговое стимулирование. //Менеджмент в России и за рубежом. №3, 1998

7.   Герчикова И.Н. Менеджмент: учебник. М., 1994


Информация о работе «Инновационный менеджмент»
Раздел: Менеджмент
Количество знаков с пробелами: 100324
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
268706
17
0

... нормативными актами: см. Приложение № 1. Нормативно-методическое обеспечение Все теоретические, методические и практические вопросы по разработке, функционированию и развитию системы инновационного менеджмента должны быть обоснованы и изложены в соответствующих нормативно-методических документах межгосударственного (международного), федерального (государственного), муниципального (регионального), ...

Скачать
74517
1
0

... свидетельствует о переходе к более высокому уровню производственных возможностей, то есть является показателем развития компании. 2 Анализ и применение инновационного менеджмента для обеспечения эффективности деятельности компании   2.1 Особенности организации инновационного менеджмента на малых и средних предприятиях В настоящее время инновации становятся ключевым фактором развития ...

Скачать
107365
2
8

... мы все сделали правильно, воспроизведем курс с начала, щелкнув кнопку Restart на панели управления. Создание кадров «Автор» и «Уч. пособ» идентично созданию кадра «Заголовок». Первый отображает фамилию и инициалы автора, а второй указывает, что это – электронный обучающий комплекс. Пятый и шестой кадр {Wait Icon и Erase Icon) весьма тесно связаны друг с другом. Эта пара обеспечивает управляемый ...

Скачать
437256
70
0

... распределения материальных благ и развития промышленного производства (сельского хозяйства, здравоохранения, связи и т. п.). Рис. 8.3. Структура системы управления общественным производством В реализации задачи инновационный менеджмент занимает специфическую и важную роль в установлении критериев и путей развития. 1 – Сбор данных и выделение ошибок. 2 – Анализ последствий ...

0 комментариев


Наверх